Impacts of air pollution on cultural heritage Raffaela Gaddi MACC-III/Copernicus Atmosphere Services User Workshop Rome, Italy , 11 May 2015 #### **Climatic and Pollution Parameters** - **✓** Climatic parameters - -Temperature - Relative Humidity - Wind - Rain - Sea Salt - **✓** Air Pollution - NO_x - SO₂ - O₃ - PM₁₀ - PM_{2.5} - BC #### **Materials** ✓ Metals **√**Glass Statua di Madama Lucrezia a Piazza San Marco (Roma) Chiesa di S. Filippo (Torino) ### Material loss of *stone materials* Foro Romano (Roma) Surface recession (R) $$\begin{array}{l} {\sf R*} \; (\mu \text{m/year}) = \; 4 + 0.0059 \; \cdot \; [{\sf SO}_2 \;] \cdot \; {\sf RH}_{60} + 0.054 \; \cdot \; [{\sf H}^+] \; \; {\sf Rain} \; + \\ 0.078 \; \cdot \; [{\sf HNO}_3] \; \cdot \; {\sf RH}_{60} + 0.0258 \; \cdot \; {\sf PM}_{10} \\ \end{array}$$ ### **Corrosion of** *metals* **Bronze** Fontana delle Tartarughe a Piazza Mattei (Roma) Surface recession (R) R* (μ m/year) = 0.15 + 0.000985 [SO₂] Rh₆₀ e ^{f(T)} + +0.00465 Rain [H⁺] + 0.00432 PM₁₀ f(T) = 0.060(T-11) when T<11°C, -0.067(T-11) otherwise Copper Tempio Maggiore Israelitico - Sinagoga (Firenze) Mass Loss (ML) ML* (g m⁻²) = 0.0027 [SO₂] $^{0.32}$ [O₃] $^{0.79}$ Rhexp{f(T)} $t^{0.78}$ + + 0.050 Rain [H⁺] $t^{0.89}$ f(T) = 0.083(T-10) when T<10°C, otherwise -0.032(T-10) # Blackening of stone materials Paratie a Piazza S. Marco (Venezia) $R/R_0 = exp(kC_{PM}t)$ R, R_0 = final and initial reflectance k= blackening coefficient C_{PM} = particulate matter concentration (PM₁₀ or PM_{2.5}) Colosseo (Roma) Vittoriano (Roma) #### **ISPRA** activities #### Collaboration ISPRA and ISCR (National Institute for Conservation and Restoration) 2003-2004 2010-2011 2013-2015 ### **Objectives** Characterization of potential decay risk due to air pollution in the environment surrounding the works of art to plan rigorous and frequent <u>maintenance activities</u> to improve the conservation conditions of the cultural heritage # **ISPRA** activities # **Two approches** ### 1. Monitoring campaigns Case study: Rome (within the Great Ring Road) Data used: pollution concentrations from the air quality monitoring network Rome Data used: pollution concentrations (PM₁₀, NO₂, O₃) from models ## **ISPRA** activities ### 2. Damage assessment through the aplication of dose- response functions Resolution: 1 km Resolution: 1 km #### Rome Surface Recession (µm/year) Recession ($$\mu$$ m/year) = 4 + 0.0059 • [SO₂] • RH₆₀ + 0.054 • [H⁺] Rain + 0.078 • [HNO₃] • RH₆₀ + 0.0258•PM₁₀ Surface Recession (µm/year) Recession ($$\mu$$ m/year) = 0.15 + 0.000985 •[SO₂] • Rh₆₀ • e ^{f(T)} + 0.00465 • Rain •[H⁺] + 0.00432 • PM₁₀ The surface recession was estimated using PM_{10} , NO_2 and O_3 concentrations from FARM model (ARPA Lazio) # Elaboration of Territorial Risk for cultural heritage at national, regional and municipal levels #### **Territorial Risk*** $R_t = n \times H_t$ **n**= number of monuments H_t= territorial Hazard represented by the damage (estimated applying the dose response functions or by pollutant concentrations when dose-response functions cannot be applied) ^{*} Risk Map of Cultural Heritage, ISCR, 1995 # 1. Territorial Risk assessment at national level Cultural heritage from Vincoli in Rete data base: national level Source: Copernicus http://www.copernicus-atmosphere.eu # Data required at <u>national</u> level Source: Vincoli in Rete database (ISCR) Territorial Risk: R_t= n x H_t Resolution: 10 x 10 km ## 2. Territorial Risk assessment at *regional* level Oultural heritage collected in Vincoli in Rete data base: regional level (Calabria) Source: Vincoli in Rete database (ISCR) Source: Copernicus http://www.copernicus-atmosphere.eu # Data required at regional level #### **From Regional Models** Analysis and reanalysis data of the following parameters (annual average): ✓ HNO₃ ✓ PM₁₀ ✓ PM₁₀ ✓ PM_{2.5} **→** **Blackening** **Material loss** Cultural heritage distribution at regional level (Calabria) Source: Vincoli in Rete database (ISCR) Resolution: 5 x 5 km Territorial Risk: R,= n x H, # 3. Territorial and Individual Risk assessments at municipal level Oultural heritage collected in Vincoli in Rete data base: municipal level (Reggio Calabria) Source: Vincoli in Rete database (ISCR) Source: Copernicus http://www.copernicus-atmosphere.eu ### Data required at municipal level ### **From Regional Models** Analysis and reanalysis data of the following parameters (annual average): ✓NO₂ **√**0₃ **Material loss** ✓ PM₁₀ ✓ PM₁₀ ✓ PM_{2.5} Blackening Cultural heritage distribution at municipal level (Reggio Calabria) Source: Vincoli in Rete database (ISCR) Territorial Risk: R,= n x H, Individual Risk: R_i= V x H_t where V= vulnerability (conservation conditions of single monument) Resolution: 1 x 1 km # **Working Group** Patrizia Bonanni (ISPRA) Carlo Cacace (ISCR) Mariacarmela Cusano (ISPRA) Raffaela Gaddi (ISPRA) Annamaria Giovagnoli (ISCR) Acknowledgments Gianluca Leone (ISPRA) Terme di Caracalla (Roma)