
Seminario
"Metodi analitici a confronto:
esperienze nella misura degli IPA
in matrici ambientali"
(Roma, 28 ottobre 2008)

La recente esperienza comunitaria nella misura del BaP in aria ambiente

Edoardo Menichini

Istituto Superiore di Sanità

Cosa richiede il D.Lgs. 152/2007 (1)

- BaP marker per il rischio cancerogeno degli IPA in aria ambiente
- misura di altri 6 IPA cancerogeni, in almeno 7 stazioni 'nazionali'
- misura dei 7 IPA in almeno 3 stazioni 'nazionali' di fondo, sia in aria che nelle deposizioni totali
- valore obiettivo per il BaP: 1,0 ng/m³, media annuale di prelievi di 24 h, nel PM10

Cosa richiede il D.Lgs. 152/2007 (2)

- metodi di riferimento:
 - per il BaP: metodo CEN (UNI EN 15549)
 - per gli IPA nelle stazioni 'nazionali': metodo nazionale (D.M. 25/11/1994, modif. D.Lgs. 152/2007)
 - per gli IPA nelle deposizioni: metodo I stisan 06/38 (2006) ⇒ metodo CEN (in prep.)
- metodi diversi: se dotati di certificazione di equivalenza ('Guidance for demonstration of equivalence' Eur. Comm., 2005)

• • •

Obiettivi di qualità dei dati

	BaP	Altri	Depos.
		IPA	totali
Incertezza, liv. di fiducia 95%			
nell'intorno del valore obiettivo			
misure fisse e indicative	50%	50%	70%
Raccolta minima dati validi misure			
fisse e indicative	90%	90%	90%
Periodo minimo di copertura			
misure fisse	33%	_	_
misure indicative	14%	14%	33%
se <i>U_{0,95}(C_{anno})</i> ≤50% (70% per le depos.)			
misure fisse	14%	_	_
misure indicative	6%	6%	6%

Mandato del CEN

Definire un metodo standard per il BaP nel PM10 le cui prestazioni soddisfano gli Obiettivi di qualità dei dati stabiliti dalla Direttiva

Programma di validazione

Test di laboratorio e sul campo, con diversi materiali distribuiti ai laboratori

Test di laboratorio

9 lab partecipanti ognuno col proprio metodo di estrazione e analisi

Tecniche di estrazione impiegate

- Soxhlet (toluene; DCM; n-esano:acetone 1:1)
- ultrasuoni (toluene; DCM; toluene:DCM:MeOH 1:1:1)
- ASE (toluene; DCM)
- riflusso (toluene; DCM)
- microonde (*n*-esano:acetone 1:1)

Analisi: 4 in GC/MS + 5 in HPLC/FLD

Materiali analizzati in ordine crescente di passaggi sperimentali

(*n* =6 per ogni analisi e ogni combinazione tecnica/solvente di estrazione)

- uno standard di BaP in soluzione
- un estratto di un pool di filtri di PM10
- materiale particellare SRM NIST "Urban air"
- porzioni di filtri con PM10
 (7 filtri 20 x 25 cm ⇒ ogni filtro: 3 x 6 porzioni + 2 per il lab pilota)

Conclusioni dei test di laboratorio (1)

	<i>s</i> (r)	s (L)	s (R)
BaP in soluz.	2,6%	3,8%	4,6%
estratto	4,9%	ca. 6%	ca. 8%
polvere SRM	5,5%	ca. 6%	ca. 8%
• filtri PM10	8,2%	13%	15%

s(R)/s(r) < 2 ⇒ robustezza dei metodi

Conclusioni dei test di laboratorio (2)

- nessuna differenza significativa tra GC/MS e HPLC/FLD
- tutte le tecniche d'estrazione testate hanno soddisfatto i requisiti di efficienza di recupero (80-120%)
- solventi raccomandati:

Soxhlet	toluene, DCM, <i>n</i> -esano:acetone 1:1
riflusso	toluene
ASE	toluene, DCM, DCM: n-esano 1:1
ultrasuoni	toluene, DCM
microonde	<i>n</i> -esano:acetone 1:1

Test sul campo

6 trial a rotazione, 6 laboratori partecipanti (1 pilota + 5)

Ogni trial: 20 prelievi giornalieri consecutivi

3 campionatori in parallelo:

2 Andersen (hi-vol)

⇒ incertezza inter-campionatore e inter-lab

1 Partisol (lo-vol) a 4 ingressi di cui

2 con e 2 senza denuder per O₃

⇒ effetto dell'O₃ durante il campionamento

Da ogni filtro Andersen: 4 sottocampioni Ø 47 mm

1	2
3	4

Distribuzione tra i laboratori delle 8 porzioni dei 2 filtri Andersen

	Filtro A				Filtro B			
Giorno	1	2	3	4	1	2	3	4
1	P	P	5	2	1	4	Р	3
2	5	2	P	1	P	3	4	P
3	4	3	P	-	2	P	1	5
		•••		•••	•••	•••	•••	•••
20	P	2	3	1	5	4	P	P

P: lab pilota; 1-5: gli altri lab

Ogni lab ha usato il suo metodo di estrazione e analisi approvato con i test di lab precedenti

Conclusioni dei test sul campo (Andersen/1)

Componenti dell'incertezza *u* (prelievo di 1600 m³; solo i risultati ≥ 0,05 ng/m³)

- 1) u inter-sottocampione = 0,06 ng/m³ (dai 2 sottocampioni dello stesso filtro, analizzati dal lab pilota)
 - nessuna relazione evidente tra l'entità della differenza tra i 2 sottocampioni e la concentrazione di BaP

Conclusioni dei test sul campo (Andersen/2)

- 2) u inter-campionatore = 0,056 ng/m³ (dai 2+1 sottocampioni dei 2 campionatori paralleli, analizzati dal lab pilota)
 - nessuna relazione evidente tra l'entità della differenza tra i 2 campionatori e la concentrazione di BaP
 - corretta per l'effetto casuale dovuto alle differenti porzioni di filtro

Conclusioni dei test sul campo (Andersen/3)

3) *u* inter-laboratorio (dai 6 sottocampioni analizzati dai 6 lab) calcolata la *u* composta media per ogni trial [BaP] media: 0,1-0,9 ng/m³

estrapolando a 1,0 ng/m³:
 u composta globale = ±18%
 u estesa = ± 37% (fattore di copertura 2)
 al livello del valore obiettivo

Conclusione dei test sul campo con/senza denuder (Partisol) (tutti i filtri di un trial analizzati dal lab pilota)

- con il denuder:
 aumento medio della conc. del BaP del 23%, max 48%
 (5 trial; n = 95, solo campioni con [BaP] ≥ 0,05 ng/m³)
- successive prove presso una cokeria, in inverno:
 - perdita media di BaP: 29%, max 64%
 - perdita di PM10: max 10%, senza correlazione con la perdita di BaP

Requisiti per le stazioni di interesse nazionale

stazioni non di fondo

- comprese nella rete regionale BaP
- media annuale attesa BaP ≥ 0,5 ng/m³
- classificazione
 - urbana: traffico (+ fondo)
 - industr. + fondo, in area urbana o suburbana
 - urbana o suburbana con uso di legna

stazioni di fondo

- rurale regionale (10-50 km) o remota
- altezza s.l.m. < 1000 m
- prelievo anche di As, Cd, Ni (+ Hg)
- possono coincidere con quelle della rete EMEP o del progetto RIPA