WFD BQEs AND THE ABILITY TO DETECT HYMO STRESS

NIKOLAI FRIBERG

Norwegian Institute for Water Research Gaustadalléen 21, NO-0349 OSLO, Norway

Outline

- Drivers of community composition in rivers
- Sensitivity of biomonitoring metrics towards HYMO change
- Interaction between HYMO and other stressors
- The influence of confounding variables in assessing effects of HYMO degradation
- Ways to assess HYMO degradation

Highly dynamic

Alarming loss of biodiversity

- Freshwater habitats cover less than 1 % of Earth surface area, but contain about 10 % of all known species
- At the same time, freshwater biodiversity has declined more than in other any other ecosystems in the world

HYdroMOrphological stress

- Quantitatively the main problem in most river basins and much HYMO degradation is historical
- Flood protection, hydropower, navigation, urban sprawl are among contemporary challenges

We are struggling to assess the impact HYMO degradation as the focus on local environmental filters ignores:

- Biotic interactions
- Dispersal (meta-community theory)
- Larger scales controls (temporal and spatial) on local conditions
- Interaction of multiple stressors across scales

What drives community composition?

Importance of scale

Acknowledge Ghosts of the past - the temporal dimension

HYMO-Biota linkages

A large body of research supports that in-stream biota are influenced by local HYMO conditions - these are, however, often small scale studies with high sampling intensity

A standard metric

Morphological index ranging from uniform (0) to very complex (1)

Paired comparison – BACI type design

IC Danish DSFI metric

(organic pollution)

Metrics sensitive to hydrological alterations

	MESH	LIFE		
Normal flow	0.61	0.52		
Low flow	-0.58	-0.47		

high positives = good/low negatives = bad (+1 to - 1)

Metrics sensitive to hydrological alterations vs. other stressor specific metrics

	MESH	LIFE	ASPT (organic)	EPT (general)	SPEAR (pesticides)
Q90	0.61	0.52	0.59	0.44	0.6
Q10	-0.58	-0.47	-0.52	-0.43	-0.55

high positives = good/low negatives = bad (+1 to - 1)

Good habitat conditions lower the effects of pesticides or?

Rasmussen et al. 2012, Environ. Poll. 164, 142-149

Good HYMO conditions can mitigate other effects of other stressors

In HYMO simple and complex stream channels (Sandin unpublished, STAR project)

Data analyses

- Several large WFD-compliant data sets were analysed across Europe
- Species data, species traits and a range of metrics were analysed against:
 - Measures of HYMO stress
 - Water chemistry
 - Land use

Analytical approach

- Process oriented
- Spatial and temporal scales
- Riparian vegetation

- Sensitive
- Stressor specific
- Low uncertainty
- Scale dependent

Potential links – HYMO stress

- Loss of hyporheric zone (macroinverts, fish)
- Low oxygen levels
- (macroinvertebrates)
- Scouring at high flows
- (perifyton)
- Changes in biotic interactions (realised habitat)

Algae:

- Will (with some uncertainty) be able to quantify the impact of nutrients
- New methodology: More groups than diatoms need to be considered/larger spatial coverage of assessment
- Might be used partly as indicators of hydraulic/fine sediment stress (coverage, morphs, traits)

- Macroinvertebrates:
 - General degradation indicators; organic pollution
 - Diagnostic tools needs to be used with care –
 they cannot indicate HYMO stress with a necessary degree of certainty
 - Combine information on multiple sites to increase scale
 - New sample methodology: Sample areas indicating high HYMO quality - might only be done in top tier/"pristine" sites as features will be lost at more degraded sites

 Macrophytes can be used if an appropriate typology is developed and traits/morphs are meaningful (mechanisms/functioning)

 Depending on stream type macrophyte community composition can add information on e.g. eutrophication

 Fish (age groups, composition) are likely to be good indicators of HYMO stress but they have a number of limitations e.g. presence/absence have many reasons other than environmental conditions

 In general less sensitive to other types of stress compared with the rest of the BQEs

Quantifiable links

BQE	Sampling method (often CEN standards)	HYMO diagnostics?	
Algae (diatoms)	Single stones/macrophytes	No	
Macroinvertebrates	1-3 m² stratified by «habitat» types along 20 to 50 m «reaches»	Yes e.g. LIFE, DFI, Mesh but none intercalibrated	
Macrophytes	Reach scale assessments (50-100 m); coverage and species/taxa composition	No	
Fish	Reaches (100 m or more)	Partly – the guilds approach relates to overall HYMO conditions	

Why it also was difficult to detect HYMO degradation using WFD compliant monitoring data

Hydromorphology

- Measured on a different spatial scale than the biota
- Static rather than dynamic measurements;
 often very limited number of consistent HYMO variables available across data sets

Hydrology

 Few hydrological stations compared with biological monitoring stations and often not at the same place

Analytical approach

- Process oriented
- Spatial and temporal scales
- Riparian vegetation

- Sensitive
- Stressor specific
- Low uncertainty
- Scale dependent

Possible indicators

- Use of species traits: habitat template theory
- Riparian organisms (ground beetles, amphibians)
- Ecosystem functioning
- Alternative sampling strategies

Recommendations

- Use the HYMO method to assess impact along the entire gradient
- Focus on improving processes when ever possible
- BQEs can primarily inform on the impact of other stressors which are relevant in multiple stress scenarios
- Fish is the most sensitive BQE with regard to HYMO; macrophytes in lowland rivers
- Alternative/new methods (not standardised; not IC'ed) can be used in investigative monitoring

Thank you!

