

ORGANIZZAZIONE E REALIZZAZIONE DI UN INTERCONFRONTO

P. De Felice ENEA

Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti pierino.defelice@enea.it

Ambiente e Radioattività: sistema nazionale di monitoraggio

18-19 giugno 2015 Ministero dell'Ambiente e della Tutela del Territorio e del Mare – Roma

Principali requisiti di una rete di rilevamento dati

- Affidabilità di ciascun punto della rete
- Validazione dei metodi di misura ai fini della comparabilità dei dati
- Accuratezza delle misure

Requisiti di affidabilità

- Diffusione di Sistemi di Qualità ISO-9000 e ISO/IEC-17025:
 - Applicazione di metodi di prova standardizzati
 - Impiego di strumentazione tarata
 - Applicazione di programmi di controllo di qualità
 - Partecipazione a circuiti di interconfronto

Programma nazionale per l'affidabilità delle reti di misura della radioattività ambientale

- Obiettivi generali
 - Garantire la riferibilità delle misure ai campioni nazionali di attività dei radionuclidi
 - Assicurare il mantenimento di un uniforme livello di affidabilità per ciascuna tipologia di misura
- Organizzatori del programma
 - ISPRA (APAT), coordinatore della rete
 - INMRI-ENEA, istituto metrologico primario

Procedure del programma

- Basato su periodiche campagne di:
 - Taratura, per stabilire la riferibilità in specifiche condizioni di misura
 - Interconfronto, per evidenziare le principali sorgenti di errore nelle misure e avviare azioni di rimedio (miglioramento continuo)

Principali tipologie di misura considerate (1983-2006)

- Sr-90 e Cs-137 nel latte (1983-1985)
- Sr-90 in matrice acquosa (1983-1993)
- Cs-137 in matrice acquosa (1983-1985)
- Sr-90 nel latte con metodi rapidi (1992)
- Miscela di γ emettitori in matrice acquosa (1987-2000)
- Miscela di γ emettitori in sorgenti liquide di elevata densità (1997)
- Beta e γ emettitori nel particolato atmosferico (1993)
- Beta e γ emettitori nella deposizione umida (1993)
- Correzione per effetto somma in spettrometria γ (2000)
- NORM e artificiali nel suolo (1991)
- Miscela di γ emettitori nel particolato atmosferico (2004)
- Radon in aria (2006)

Partecipanti al programma

- Il programma è rivolto a tutti i laboratori delle reti di sorveglianza della radioattività ambientale
- Laboratori effettivi + "ospiti"
- Numero di partecipanti/campagna variabile da 10 a 50

Partecipanti al programma 1983-2004 (1)

Laboratorio	I	I	T+I	T+I	T	I	I	T+I	T+I	T+I	T	T+I	T+I	T	I	I
(denom. non aggiornata)	β	β	β	β	β	γ	γ	γ	γ	γ	γ	γ	γ	γ	γ	radon
	83	85	88-89	90	93	83	85	87-88	90	91	93	96	98	99-00	04	06
APPA - BOLZANO					X					X	X	X	X	X	X	X
APPA - TRENTO					X			X			X	X	X	X	X	X
ARPA CALABRIA					X						X	X	X	X	X	
ARPA CAMPANIA					X						X	X	X	X	X	
ARPA EMILIA ROMAGNA		X	X	X	X	X	X	X	X	X	X			X	X	X
ARPA F.V. GIULIA - UDINE					X			X	X	X	X			X	X	X
ARPA LAZIO - TARQUINIA					X						X	X	X	X		
ARPA LIGURIA - GENOVA					X						X	X	X	X	X	X
ARPA LOMB BERGAMO				X				X	X	X				X	X	X
ARPA LOMB CREMONA			X	X				X	X	X				X	X	
ARPA LOMB MILANO			X	X	X			X	X	X	X			X	X	X
ARPA LOMB PARABIAGO														X		
ARPA MARCHE - ANCONA					X			X	X	X	X				X	X
ARPA MOLISE - CAMPOBASSO					X						X	X	X	X	X	
ARPA PIEM CUNEO														X		
ARPA PIEM IVREA			X		X			X	X	X	X			X		X
ARPA PIEM VERCELLI												X		X	X	
ARPA PUGLIA - BARI					X						X	X	X	X	X	X
ARPA SARDEGNA - CAGLIARI					X					X	X			X	X	X
ARPA SARDEGNA SASSARI						X			X	X				X	X	
ARPA TOSCANA - FIRENZE					X			X	X	X	X			X	X	
ARPA TOSCANA - GROSSETO														X		
ARPA TOSCANA - LIVORNO														X		
ARPA TOSCANA - MASSA														X		
ARPA UMBRIA - PERUGIA					X			X	X	X	X			X	X	X
ARPA V. D'AOSTA - AOSTA					X						X	X	X	X	X	X

Partecipanti al programma 1983-2004 (2)

Laboratorio	I	I	T+I	T+I	T	I	I	T+I	T+I	T+I	T	T+I	T+I	T	I	I
(denom. non aggiornata)	β	β	β	β	β	γ	γ	γ	γ	γ	γ	γ	γ	γ	γ	radon
	83	85	88-89	90	93	83	85	87-88	90	91	93	96	98	99-00	04	06
ARPA VENETO - BELLUNO														X	X	X
ARPA VENETO - PADOVA														X	X	X
ARPA VENETO - TREVISO														X		X
ARPA VENETO - VENEZIA														X	X	
ARPA VENETO - VERONA					X			X	X	X	X			X	X	X
ARPA VENETO - VICENZA														X	X	X
ARPA-PIEM ALESSANDRIA												X		X	X	
ARPA-PIEM TORINO															X	
ARTA ABRUZZO - PESCARA					X						X	X	X	X	X	X
AULSS 12 VENEZIANA														X	X	
CCR - ISPRA				X					X	X				X	X	
CISAM - PISA				X					X	X					X	
CISE - MILANO	X	X				X	X									
CNR ICTIMA - PADOVA														X	X	
CRI - ROMA										X				X	X	
CRR POTENZA					X						X	X	X			
CRR-PALERMO					X						X	X	X	X	X	
ENEA BOLOGNA			X	X					X	X						X
ENEA BRASIM.				X					X	X					X	
ENEA CASACCIA		X	X	X			X	X	X	X				X	X	
ENEA FRASCATI									X	X				X	X	
ENEA MONTEC.									X	X						
ENEA S. TERESA									X							
ENEA SALUGGIA	X	X		X		X	X		X	X				X	X	
ENEA TRISAIA	X	X		X		X	X		X					X	X	

Partecipanti al programma 1983-2004 (3)

Laboratorio	I	I	T+I	T+I	T	I	I	T+I	T+I	T+I	T	T+I	T+I	T	I	I
(denom. non aggiornata)	β	β	β	β	β	γ	γ	γ	γ	γ	γ	γ	γ	γ	γ	radon
	83	85	88-89	90	93	83	85	87-88	90	91	93	96	98	99-00	04	06
INAIL - ROMA															X	X
INFN FRASCATI										X					X	
ISPRA - ROMA						X	X		X					X	X	X
ISS - ROMA														X		
IZS - TERAMO								X	X	X						
IZSLT - ROMA												X			X	
IZSPB - FOGGIA								X							X	
J. STEFAN INST. LUBjANA														X		
LENA - PAVIA	X	X				X	X		X	X				X	X	
OSP. GALL. GENOVA								X	X	X						
PMP PESARO									X	X						
PROTEX FORLI'	7.7	***		**		**	**		X	**				**	***	
SOGIN - CAORSO	X	X		X		X	X		X	X				X	X	
SOGIN - GARIGLIANO	X	X		X		X	X		X	X				X	X	
SOGIN - LATINA SOGIN - TRINO	X X	X X		X X		X X	X X		X X	X X				X X	X X	
UNIV. NAPOLI	Λ	Λ		Λ		X	X	X	Λ	Λ				X	X	X
UNIV. CAGLIARI						Λ	Λ	Λ	X	X				Λ	X	Λ
UNIV. CASERTA									Λ	Λ				X	X	
UNIV. CATT PIACENZA														X	X	
UNIV. CATT ROMA														21	21	
UNIV. LUXEMBOURG														X		
UNIV. MILANO										X					X	
USL 1 TRIESTE								X	X	X						
USL 11 PORDENONE								X		X						
USL 13 GENOVA								X	X	X						
USL 27-28 BOLOGNA									X	X					X	
USL 3 PESARO								X								
USL C5 TRENTO								X								
USL"C. SUD" BOLZANO								X	X	X						

Tutte le sorgenti campione utilizzate nel programma sono riferibili ai sistemi di misura campione dell'INMRI-ENEA

I sistemi campione sviluppati presso l'INMRI-ENEA comprendono circa 20 linee sperimentali per la misura assoluta delle grandezze associate alle radiazioni ionizzanti.

L'INMRI-ENEA è al servizio del Paese nel garantire la riferibilità delle misure ai campioni delle unità di misura delle RI

Frontespizio di un Certificato di Taratura dell'INMRI-ENEA con il logo che ne attesta il riconoscimento internazionale

Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti

CERTIFICATO DI TARATURA N. 000/DRP

Questo certificato è coerente con le capacità di misura e di taratura (CMC) specificate nell'Appendice C dell' "Accordo di Mutuo Riconoscimento" (MRA) il cui testo è stato elaborato dal Comité International des Poids et Mesure (CIPM). Nell'ambito del MRA, tutti gli istituti metrologici nazionali partecipanti riconoscono reciprocamente la validità dei certificati di taratura e di misura emessi da ciascuno di essi per le grandezze, i campi e le incertezze di misura specificati nell'Appendice C (per ulteriori dettagli, consultare il sito del Bureau International des Poids et Mesures (BIPM) http://www.bipm.org).

Certificato di taratura relativo a:

complesso di misura dell'equivalente di dose ambiente H * (10).

Il complesso di misura è costituito da elettrometro e rivelatore.

Rivelatore del complesso di misura: camera a ionizzazione a pressione.

Interconfronto 2013-2014

Tipologie di misura proposte per il programma 2013-2014

a) Misure alfa/beta/gamma in matrici liquide (selezionata)

Determinazione degli emettitori gamma, della radioattività alfa-totale, beta-totale e dello Sr-90 in una miscela di radionuclidi in soluzione liquida acquosa a *densità superiore a quella dell'acqua*

b) Misure di NORM

Determinazione dei NORM in una matrice solida (suolo, sabbia, fosfogesso,...) mediante spettrometria gamma e/o analisi radiochimiche

c) Correzioni per effetto somma

Determinazione dei fattori di correzione per effetto somma in misure di spettrometria gamma, per due radionuclidi artificiali (Cs-134, Eu-152), con sorgenti in geometria volumica da 1 L (beaker di Marinelli o contenitore cilindrico)

Obiettivi dell'interconfronto

- Obiettivo generale: identificazione e quantificazione degli emettitori gamma, alfa e beta in una soluzione liquida acquosa con densità prossima a quella dell'acqua
- Obiettivi specifici:
 - Identificazione e determinazione delle concentrazioni di attività:
 - <u>dei radionuclidi emettitori gamma</u> (40 keV < E_{γ} <2 MeV)
 - <u>alfa totale</u> (somma delle concentrazioni di attività equivalenti degli emettitori alfa presenti)
 - <u>beta totale</u> (somma delle concentrazioni di attività equivalenti degli emettitori beta presenti)
 - di Sr-90
 - Determinazione della <u>Minima Attività Rivelabile (M.A.R.)</u>, nelle condizioni di misura, per alcuni radionuclidi non necessariamente presenti nella sorgente campione.
 - Determinazione sperimentale della <u>ripetibilità e riproducibilità dei</u> metodi di misura utilizzati nelle condizioni di misura.

Metodi e strumenti utilizzati

- Matrice, radionuclidi utilizzati e valori di concentrazione di attività scelti per valutare le capacità analitiche dei partecipanti in riferimento alle tipologie di misura alfa, beta e gamma.
- Condizioni di misura complesse per quantità delle misurazioni da effettuare e dei dati da valutare e riportare
- Apparecchiature utilizzate:
 - spettrometri γ ad elevata risoluzione (HPGe)
 - sistemi di misura alfa e beta a basso fondo di vario tipo (contatori proporzionali, plastici, a scintillatore liquido,...)
 - Sistemi per trattamento e separazione radiochimica del campione
- Dati nucleari di riferimento: Archivio internazionale "Monographie BIPM-5" (DDEP)

Partecipanti

- All'interconfronto hanno partecipato:
 - N. 42 laboratori effettivi (E): circuito RESORAD, ISS e INAIL,
 spese di partecipazione a carico della convenzione MATTM
 - altri 15 laboratori, in qualità di "ospiti", con pagamento di specifica quota d'iscrizione
- Tot 57 partecipanti
- Ospiti come risorsa potenziale in caso di necessità
- Ciascun partecipante identificato con codice riservato (garanzia anonimato)

Elenco partecipanti (tot. 57)

Partecipante	Effettivo (E) Ospite (O)	Partecipante	Effettivo (E) Ospite (O)
APPA BOLZANO	E	ARPA VENETO VICENZA	Е
APPA TRENTO	Е	ARTA ABRUZZO	Е
ARPA BASILICATA	Е	C.R.I.	Е
ARPA CALABRIA Cosenza	Е	CISAM	0
ARPA CALABRIA REGGIO C.	Е	COMIE	0
ARPA CAMPANIA	Е	ENEA C.R. CASACCIA ION-IRP-MIR	Е
ARPA EMILIA-ROMA GNA	Е	ENEA C.R. CASACCIA ION-IRP-SFA	Е
ARPA FVG	E	ENEA C.R. FRASCATI ION-IRP-FUAC	Е
ARPA LAZIO LATINA	Е	ENEA C.R. SALUGGIA ION-IRP-MIR	Е
ARPA LAZIO VITERBO	Е	ENEA C.R. TRISAIA ION-IRP-MIR	Е
ARPA LIGURIA	Е	INFN CATANIA	0
ARPA LOMBARDIA BERGAMO	Е	INFN GRAN SASSO	Е
ARPA LOMBARDIA MILANO	Е	ISPRA	Е
ARPA MARCHE	Е	ISS	Е
ARPA MOLISE	E	IZS PUGLIA E BASILICATA	Е
ARPA PIEMONTE ALESSANDRIA	Е	IZSAM TERAMO	Е
ARPA PIEMONTE IVREA	Е	IZSLT ROMA	0
ARPA PIEMONTE VERCELLI	Е	NUCLECO	0
ARPA PUGLIA	Е	PROTEX	0
ARPA SARDEGNA CAGLIARI	Е	SOGIN CAORSO	О
ARPA SARDEGNA SASSARI	Е	SOGIN GARIGLIANO	0
ARPA SICILIA CATANIA	Е	SOGIN LATINA	0
ARPA SICILIA PALERMO	Е	SOGIN TRISAIA	0
ARPA TOSCANA	Е	UNIVERSITA' DI PAVIA - LENA	0
ARPA UMBRIA	Е	UNIVERSITA' DI CAGLIARI	0
ARPA VALLE D'AOSTA	Е	UNIVERSITA' DI NAPOLI	0
ARPA VENETO BELLUNO	Е	UNIVERSITA' DI NAPOLI Federico II	0
ARPA VENETO PADOVA	Е	UNIVERSITA' DI PERUGIA	0
ARPA VENETO VERONA	Е		

Aspetti organizzativi

- Ciascun laboratorio ha ricevuto dall'INMRI-ENEA:
 - Sorgente campione con relativo codice
 - Scheda Partecipante con codice riservato
 - Nota Informativa
 - Scheda Risultati da compilare e rinviare all'INMRI-ENEA
- Uso di corrieri e posta elettronica
- Misurazioni effettuate con i metodi usuali di ciascun partecipante
- Incertezze valutate in modo omogeneo (l.c. 68%)
- Analisi di oltre 1000 diversi dati
- Riunioni bilaterali con i partecipanti da svolgere a breve per analizzare i problemi evidenziati

Evoluzione temporale

Data	Fase
agosto 2013	Stipula convenzione ENEA-ISPRA
ottobre 2013	Raccolta adesioni dai partecipanti
ottobre 2013	Invio materiale informativo ai partecipanti
novembre 2013	Definizione lista definitiva dei partecipanti
novembre 2013	Invio sorgenti
dicembre 2013	Scadenza invio risultati
gennaio 2014	Termine ultimo invio risultati
gennaio-settembre 2014	Analisi dati
ottobre 2014	Emissione rapporto Task 01.05.01 per MATTM

Sorgente campione utilizzata

ENEA-MRL-2049/n n=1, 100 per aliquota specifica
21/10/2013
Soluzione liquida acquosa con densità prossima a quella dell'acqua
HCl 1 M + 25μg/g di alcuni elementi trascinatori (forma di cloruri)
1,016 ± 0,02 g·cm ⁻³
Alfa-beta-gamma emettitori: Am-241, Cs-137, Sr-90
0,02-0,1 Bq/g (Sr-90) 0,2-2,0 Bq/g (altri alfa, beta, gamma emettitori)
inferiori a 0,1% dell'attività totale
accuratamente controllata, < 0,5 %
~ 20 L
200 cm³ distribuite a ciascun partecipante in flaconi sigillati
contenitore in PET con tappo a vite e doppia busta sigillata, in contenitore di cartone con assorbitore d'urto
Fornite nella Nota Informativa

Preparazione della sorgente campione

Certificazione della sorgente campione

- Diluizione gravimetrica di n. 3 sorgenti campione liquide tarate per confronto diretto con i campioni di attività mantenuti dall'INMRI-ENEA
- Riferibilità: INMRI-ENEA
- Valori di riferimento per i radionuclidi presenti:

Radionuclide	Concentrazione di attività (Bq/g)	Incertezza relativa (%)
Am-241	0,4637	2,5
Cs-137	1,6824	1,8
Sr-90	0,0825	1,7

Valori di riferimento per i misurandi dell'interconfronto

- Attività alfa totale = attività di Am-241
- Attività beta totale = somma attività di Cs-137, Sr-90 e Y-90, all'equilibrio secolare

Radionuclide	Concentrazione di attività (Bq/g)	Incertezza tipo composta relativa (%)
Am-241	0,4637	2,5
Cs-137	1,6824	1,8
Sr-90	0,0825	1,7
Alfa totale	0,4637	2,5
Beta totale	1,874	1,8

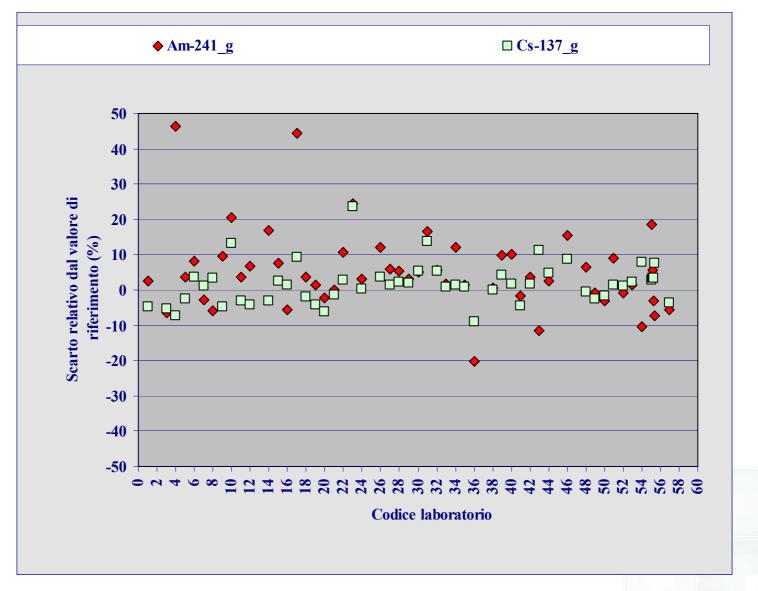
Falsi positivi e negativi

Falsi positivi:

Radionuclide	Cod. Part.
Co-60	9
Be-7	36
K-40	41

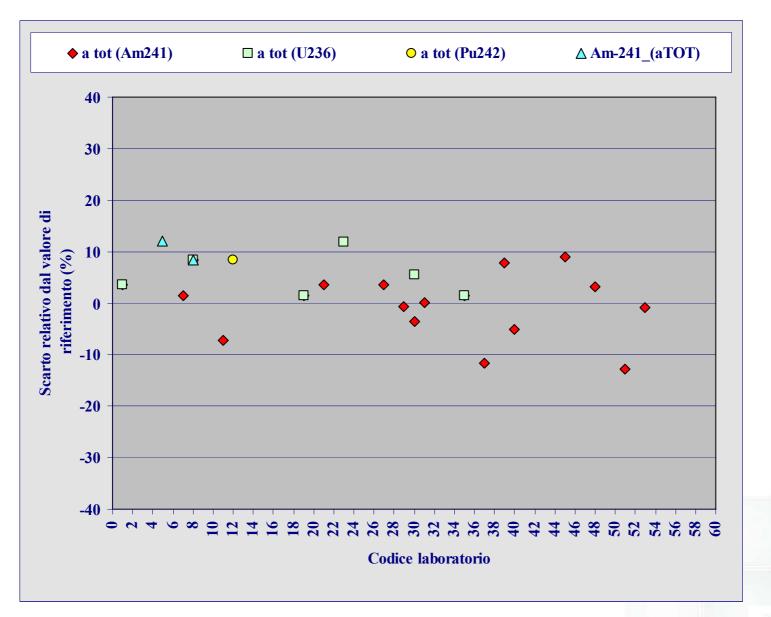
• Falsi negativi: nessuno riscontrato

Analisi dei risultati (concentrazione di attività)

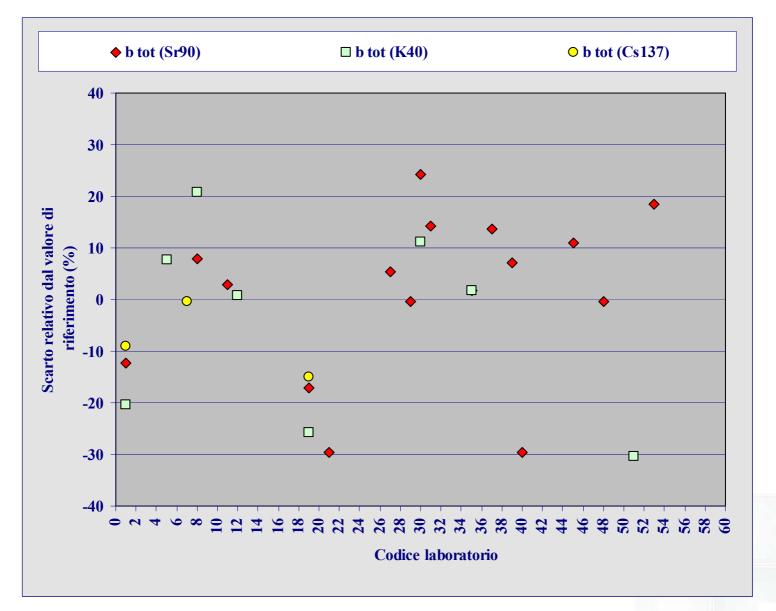

- A_{lab} = valore di concentrazione di attività fornito da ciascun partecipante, per ciascuno dei cinque misurandi oggetto della prova valutativa
- A_{rif} = valore di riferimento dell'INMRI-ENEA
- *S(%)*, scarto percentuale:

$$S(\%) = 100 \frac{A_{lab} - A_{rif}}{A_{rif}}$$

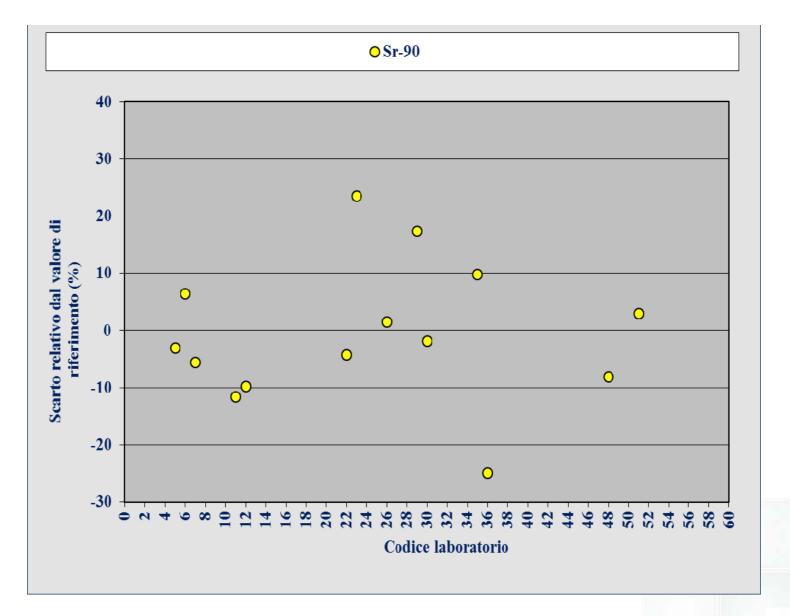
 Valori di S(%) calcolati per i cinque misurandi considerati e i 57 laboratori partecipanti, distinti in effettivi (E) ed ospiti (O)



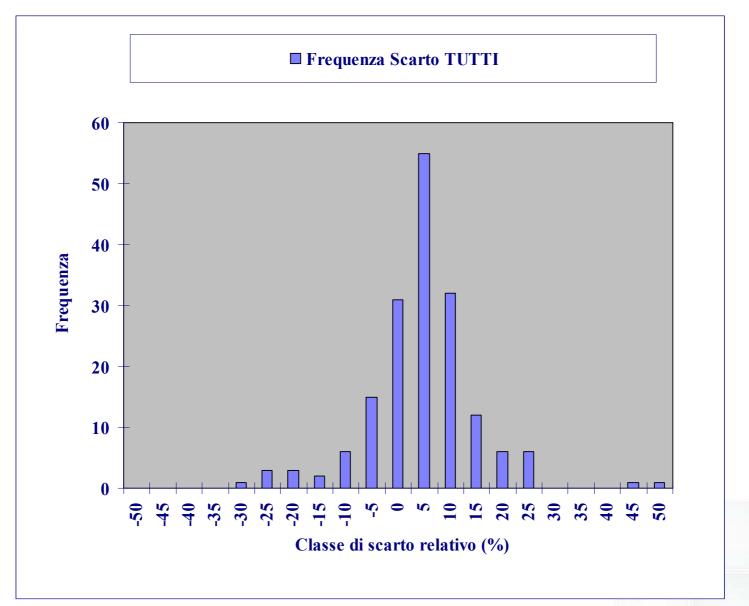
Scarti relativi - Am-241 e Cs-137 (gamma)


Scarti relativi - alfa totale

N.28/34;


Scarti relativi - beta totale

N.29/34;



Scarti relativi - Sr-90

Prossime azioni

- Colloqui bilaterali con alcuni partecipanti per risultati anomali
- Giornata di presentazione e discussione con tutti i partecipanti
- Dati complementari (MAR, metodi di misura utilizzati, ripetibilità e riproducibilità, statistiche, incertezze, errori, ...)
- Rapporto tecnico dettagliato conclusivo
- Definizione prossima campagna di interconfronto

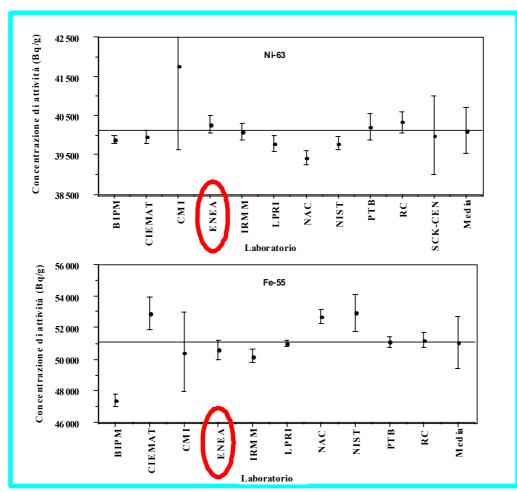
Conclusioni

- Totale di 174 risultati di concentrazione di attività riportati dai partecipanti
- Livello medio di accuratezza contenuto per lo più entro il 10%
- Valori massimi di scarto compresi entro ± 50%
- Scarto medio complessivo = (2,2 ± 10,6) %
- Scarto medio massimo = 5,2 % (Am-241 gamma)
- Scarto medio minimo = -0,5 % (Sr-90)

Principali tipologie di misura riguardanti il proseguimento del programma

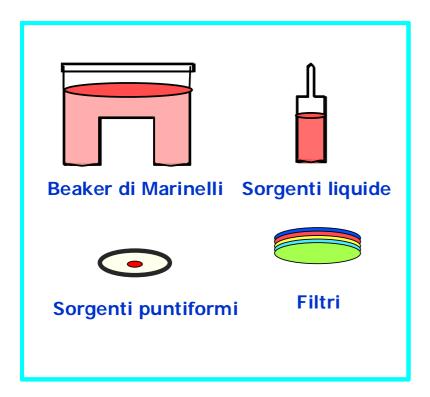
- Misure di radionuclidi naturali
- Analisi di uno spettro γ di riferimento
- Misure γ in campioni di suolo
- Misure di radon in aria
- Misure di radon in acqua
- Misure γ in sorgenti liquide con diversa densità
- Spettrometria α

GRAZIE PER L'ATTENZIONE



APPROFONDIMENTO

I confronti internazionali (BIPM, EUROMET), rendono i campioni nazionali "equivalenti" a quelli di altri paesi

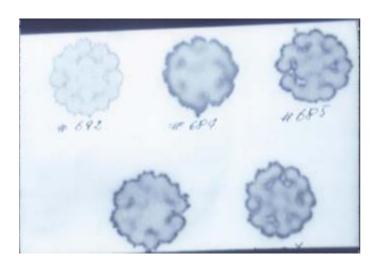


Risultati del confronto internazionale per la misura di radionuclidi emettitori beta puri (Ni-63) o che decadono per cattura elettronica (Fe-55).

N.37/34;

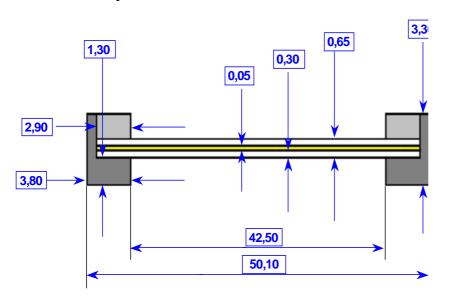
Sorgenti campione preparate dall'INMRI-ENEA

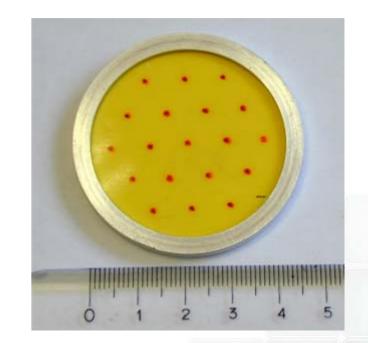
Source type	Emitted radiations	Activity level
point sources (< 20 mm ²)	β, γ	from 50 Bq to 1 MBq
extended area (10 ÷ 400 cm ²)	α, β, γ	from 50 Bq to 1 MBq
electrodeposited (0,2 ÷ 1 cm ²)	α	from 10 Bq to 5 kBq
gas sources (< 100 cm ³)	γ (²²² Rn)	from 1 kBq to 50 kBq
Liquid or solid matrices (1 cm ³ ÷ 100 dm ³)	β, γ	from 1 Bq kg-1 to 1 MBq g-1
Marinelli beaker (0,5 ÷ 2 dm ³)	γ	from 1 Bq to 100 kBq
Reference atmosphere (0,1 ÷ 1 m ³)	α, β, γ (²²² Rn)	from 1 kBq m ⁻³ to 500 kBq m ⁻³


Materiali di riferimento per misure di radioattività ambientale realizzati dall'INMRI-ENEA

Matrix	Density (g/cm ³)	Number of samples
Silice	0.4	2
Kaolin	0.6	2
Zeolite	8.0	2
HCI 0.2 N	1.00	8
Gel	1.00	3
HCI 0.5N	1.004	2
Gel	1.006	2
HCI 1N	1.01	10
HCI 2N	1.03	8
Gel	1.03	3
HCI 0.2 N + KCI	1.05	5
Gel	1.05	3
HCI 4N	1.06	3
Glucose	1.30	2
Soil	1.30	5
Sand	1.60	5
Sand	1.75	5
Simulated filters	-	1
TOTAL	_	71

- Miscele di radionuclidi emettitori alfa, beta e gamma
- Matrici artificiali liquide e solide
- Matrici naturali (suolo, latte, sabbia, aria, ...)

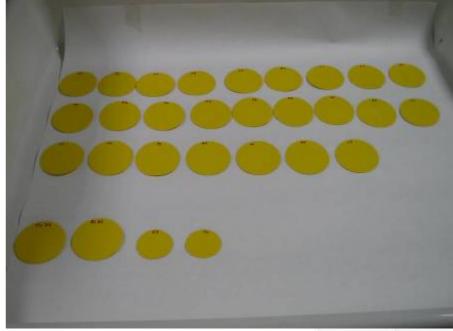

N.39/34;



Sorgenti per interconfronto 2004: filtri simulati su polistirolo

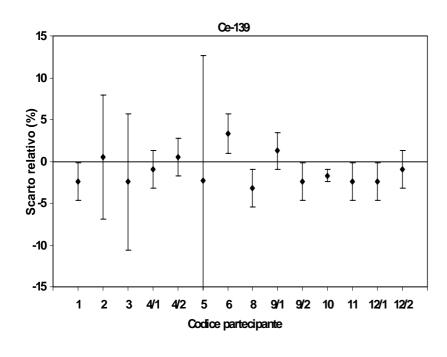
Deposizione su carta

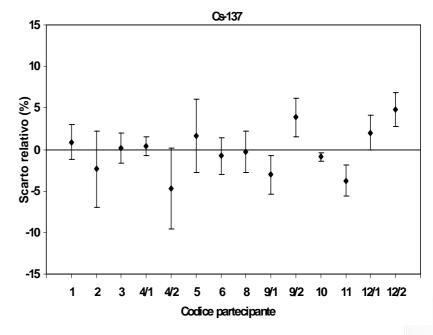




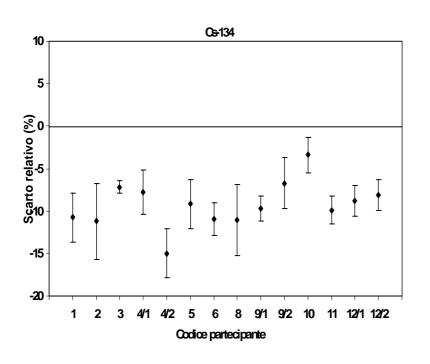
Deposizione su polistirolo

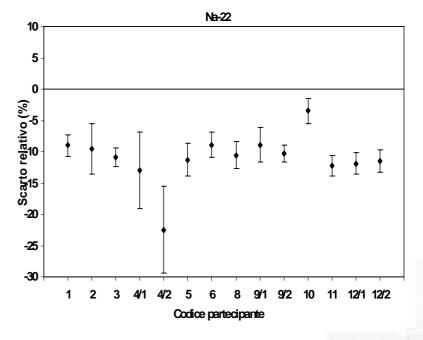
Sorgenti campione su filtri simulati (campagna 2004)

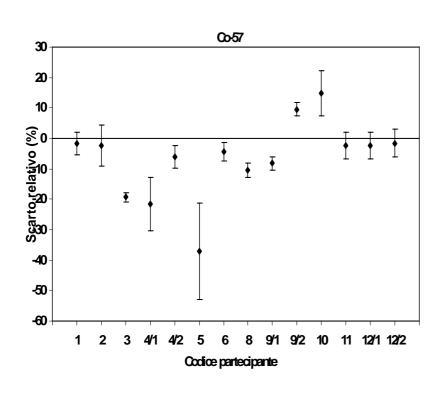


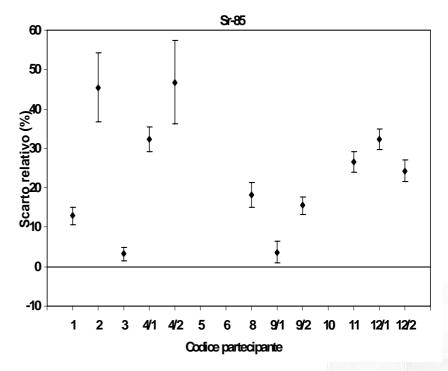

Principali elementi considerati nell'analisi dei dati degli interconfronti

- Metodica utilizzata
- Strumento di misura e specifiche tecniche misurate e nominali
- Procedura di taratura
- Risoluzione energetica
- Procedure di taratura
- Identificazione dei nuclidi presenti
- Tempo di conteggio
- Correzioni per tempo morto
- Correzione per fondo e per bianco
- Determinazione della resa chimica di separazione
- Deconvoluzioni spettrometriche
- Correzione per decadimento in presenza di un precursore
- Correzioni per geometria
- Correzioni per autoassorbimento ed effetto somma
- Precisione e accuratezza del risultato
- Valutazione ed espressione dell'incertezza di misura
- Valutazione ed espressione del limite di sensibilità


Interconfronto gamma 1997: due tipiche situazioni soddisfacenti




Interconfronto gamma 1997: presenza di errori sistematici (effetto somma)



Interconfronto gamma 1997: errori dovuti ad interferenze spettrali

Nuovi progetti europei INMRI-ENEA (2011-2014) Call IND&ENV

MetroRWM: "Metrology for radioactive waste management"

MetroMETAL: "Ionizing radiation metrology for metallurgical industry"

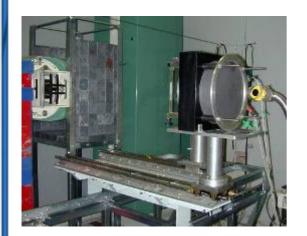
MetroNORM: "Metrology for processing materials with high natural radioactivity"

RADIOACTIVE

- Sviluppo di nuovi metodi e strumenti di misura di rifiuti radioattivi in accordo con la legislazione nazionale ed internazionale (IAEA, NEA)
 - deposito rifiuti
 - materiali industriali
 - NORM
- Sviluppo di materiali di riferimento per assicurare riferibilità delle misure
- Sviluppo di procedure e tecniche per misure ed analisi in situ
- Miglioramento dei dati nucleari per nuclidi presenti nei depositi radioattivi
- Sviluppo di SW per acquisizione ed analisi dati

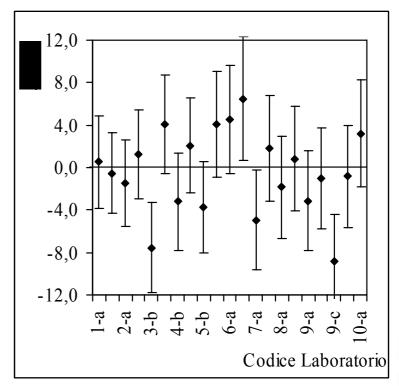
ENEA-INMRI EMRP participation

	Scheme	Title	Resp.	Note
1	iMera-Plus JRP T2.J06	Increasing cancer treatment efficacy using 3D brachytherapy	M.P. Toni, M. Bovi	value: 798 k€, fin. CE: 257 k€ start: lug. 2008
2	iMera-Plus JRP T2.J07	External beam cancer therapy	M. Pimpinella	value: 351 k€, fin. CE: 112 k€ start: apr. 2008
3	EMRP	MetroFission: "Metrology for New Generation Nuclear Power Plants"	M. Capogni P. De Felice, S. Loreti	value: 196 k€, fin. CE: 90 k€ start: sett. 2010
4	EMRP	MetroRWM: "Metrology for Radioactive Waste Management"	M.L. Cozzella, P. Carconi, M. Capogni	value: 385 k€, fin. CE: 175 k€ start: ott. 2011
5	EMRP	MetroMetal: "Ionizing Radiation Metrology for Metallurgical Industry"	P. Carconi, M.L. Cozzella, M. Capogni	value: 362 k€, fin. CE: 165 k€ start: dic. 2011
6	EMRP	MetroMRT: "Metrology for Molecular Radiotherapy"	M. Capogni M. D'Arienzo A. Guerra	value: 433 k€, fin. CE: 195 k€ start: sett. 2012
7	EMRP	BioQuaRT: "Biologically Weighted Quantities in Radiotherapy"	M. Pinto A. Guerra, M.P. Toni, M. Pimpinella	value: 200 k€, fin. CE: 90 k€ start: sett. 2012
8	EMRP	MetrExtRT: "Metrology for Radiotherapy Using Complex Radiation Fields"	M. Pimpinella A. Guerra, M.P. Toni	value: 419 k€, fin. CE: 188 k€ start: sett. 2012
9	EMRP	MetroNORM: "Metrology for processing materials with high natural radioactivity"		value: 491 k€, fin. CE: 221 k€ start: may. 2013
	N.47/34;	P. De Felice, "Organizzazione e realizzazione di un interconfront	TOTAL	value: 3600 k€, fin. CE: 1492 k€



Necessità di avviare/potenziare programmi di affidabilità nazionali in altri settori quali:

Medicina nucleare
Impianti nucleari
Monitoraggio radon
Contaminazione interna ed esterna
Dosimetria ambientale e personale
Radioterapia
Misure neutroniche



Necessaria la collaborazione con altri organismi nazionali

Esempio: Tarature al F-18 nei centri PET italiani

$$\Delta(\%) = 100 \frac{x_L - x_R}{x_R}$$