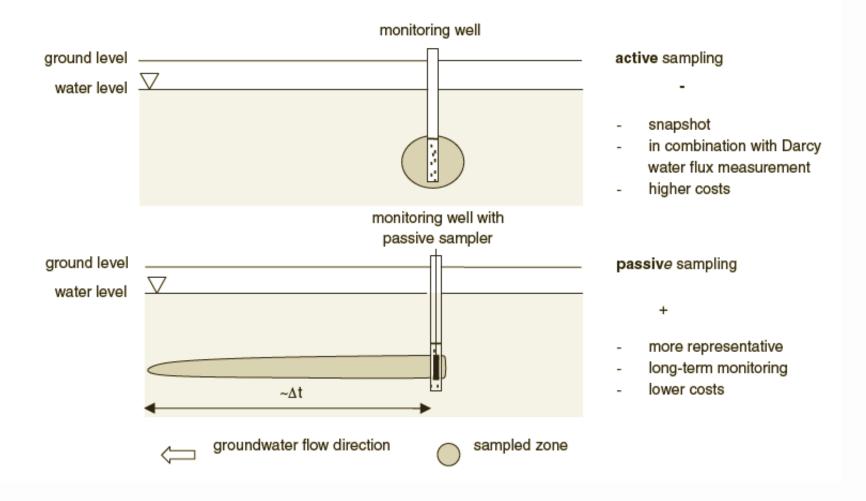
Campionatori passivi nel controllo e monitoraggio di acque sotterranee: stato dell'arte e prospettive applicative

S. Chiavarini, P. Massanisso, C. Ubaldi ENEA *UTPRA*

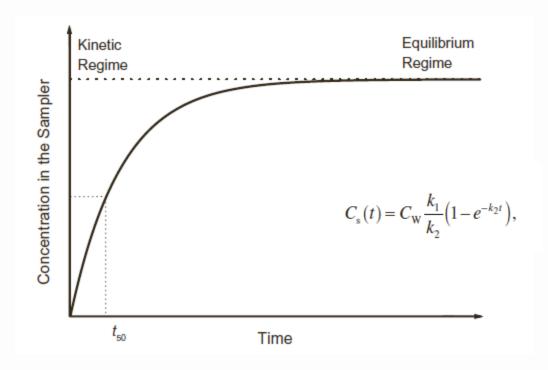
Campionamento passivo - pro

- Indipendenza da sorgenti di energia (es. pompe)
- Dato integrato nel tempo
- Bassi limiti di concentrazione apprezzabili
- Semplicità operativa e di implementazione
- Minor costo globale (?)



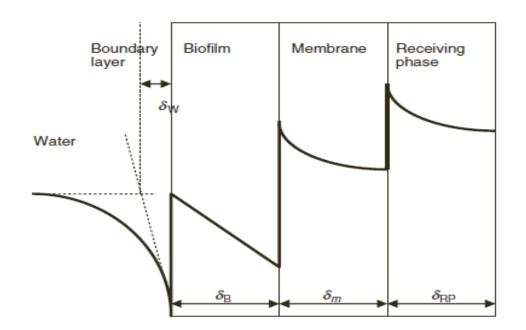
Campionamento passivo - contro

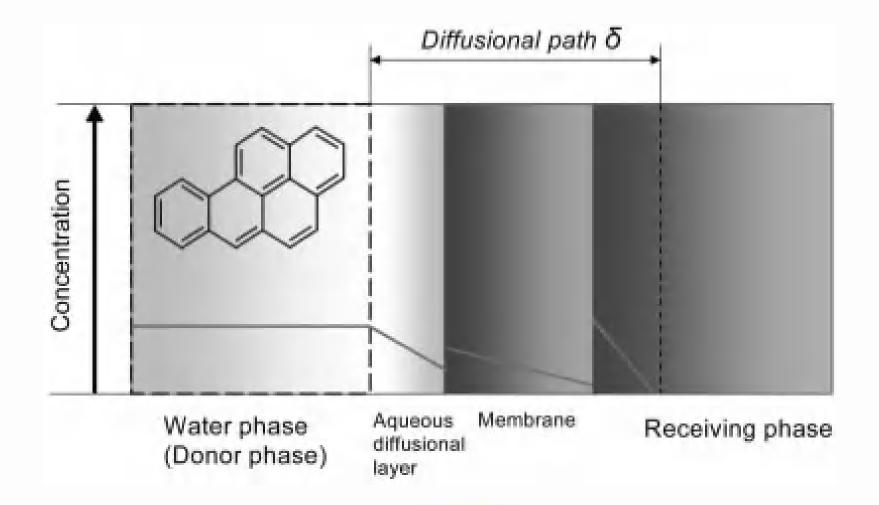
- Difficile valutazione delle variabili al contorno
- Dati quantitativi non sempre possibili (calibrazione)
- Scelta del tipo di campionatore non banale
- Metodologie non normate o esplicitamente previste (es. per WFD)



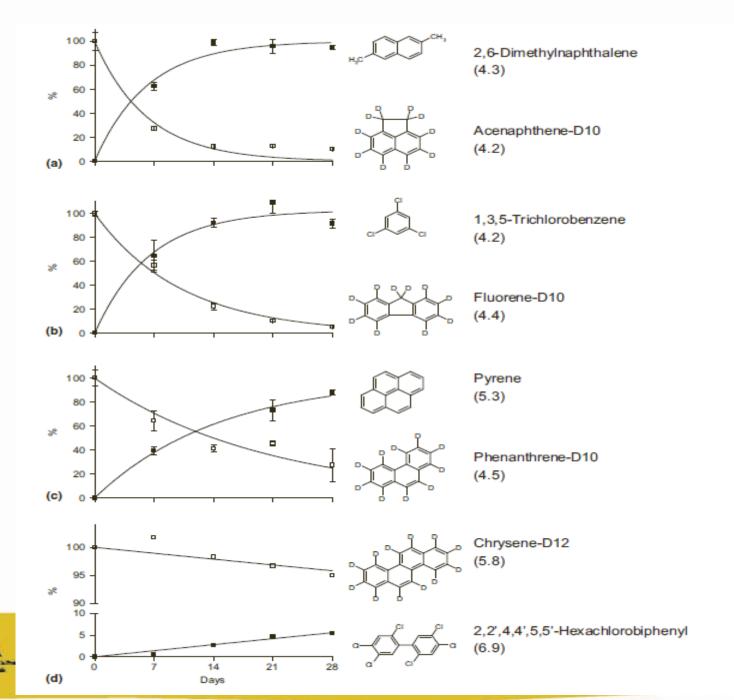
Diffusion/permeation barriers and receiving phases employed in various passive samplers for the application in water

	Sampler	Barrier type	Sorbent/receiving phase	Operating region	Analyte
1	Regenerated cellulose dialysis membrane samplers	Cellulose dialysis membrane (approximately 18 Å pore size)	Deionized water	Equilibrium	Organic and inorganic constituents
2	Nylon screen passive diffusion samplers	Nylon screen with approx 125 µm pore size nylon mesh	Deionized water	Equilibrium	Organic and inorganic constituents
3	Passive vapor diffusion (PVD) samplers	Low density polyethylene	Clean air	Equilibrium	VOCs
4	Peeper samplers	Polysulfone membrane	Deionized water	Equilibrium	Organic and inorganic compounds
5	Polyethylene diffusion bag (PDB) samplers	Low density polyethylene	Deionized water	Equilibrium	Dissolved VOCs
6	Rigid porous polyethylene samplers (RPPS)	Porous polyethylene (6–15 µm pore size)	Deionized water	Kinetic, equilibrium	Organic and inorganic compounds
7	Zhang and Hardy sampler	Polycarbonate	XAD-7, Tenax	Kinetic	Phenolic compounds
8	Trimethylpentane-containing passive sampler (TRIMPS)	Polyethylene membrane	2,2,3-Trimethyl pentane	Kinetic	Pesticides
9	Semi-permeable membrane devices (SPMD)	Low density polyethylene. Historically, silicone, polypropylene and polyvinyl chloride have also been tried	Triolein	Linear, non linear, equilibrium	Non-polar hydrophobic compounds
10	Gore sampler	Gore-Tex membrane (expanded PTFE)	Various sorbents depending on the analyte of interest	Kinetic	VOCs and SVOCs
11	Polar organic chemical integrative sampler (POCIS)	Polyethersulfone membrane	Generic – three types of sorbent; pharmaceutical – single sorbent (Oasis	Kinetic	Polar organic compounds (pesticides, pharmaceuticals, etc.)
12	Passive in-situ concentration extraction sampler (PISCES)	Low density polyethylene	HLB) Hexane or iso-octane	Kinetic	Non-polar hydrophobic compound
13	Kot et al. sampler	Polypropylene or PTFE	Hexane or iso-octane	Kinetic, equilibrium	Organic compounds
14	Solid phase microextraction (SPME)	None	Various sorbents coated on the SPME fiber	Kinetic, equilibrium	Various depending on the sorbent
15	Ceramic dosimeter	Diffusion through porous ceramic membrane	Various – ion-exchange resin, Tenax	Kinetic	Organic and inorganic compounds
16	Chemcatcher	Various – cellulose acetate, polysulfone, polyethylene, etc.	Various – immobilized chelating acceptor resin coated on PTFE, C ₁₈ Empore Disk	Kinetic	Polar and non-polar organic compounds
17	MESCO sampler	Cellulose or low-density polyethylene	PDMS coated on a stir bar	Kinetic	PAHs, PCBs and organochlorine pesticides
18	Lee and Hardy passive sampler	Silicone polycarbonate	Porapak-Q and Tenax-TA	Kinetic	Monocyclic aromatic hydrocarbons
19	Solid phase adsorption toxin tracking (SPATT) bags	95 μm polyester mesh	Porous, hydrated adsorption resin	Kinetic	Biotoxin
20	Solvent-filled dialysis membrane sampler	Dialysis membrane	Hexane or heptane	Kinetic	Lipophilic compounds
21	Stabilized liquid membrane device (SLMD)	Low-density polyethylene lay-flat tube	Solution of acidic compounds like oleic acid	Kinetic	Doubly charged metal ions
22	Passive integrative mercury sampler (PIMS)	Low-density polyethylene lay-flat tube	PIMS reagent	Kinetic	Mercury vapor
23	Permeation liquid membrane (PLM) sampler	Membrane made of 1,10-didecyldiaza-18-crown-6 (22DD) and lauric acid (1:1 ratio) in 1:1 (v/v) toluene/phenylhexane	1,2-Cyclohexylene-aminotetraacetic acid (CDTA) or pyrophosphate solution	Kinetic	Cu, Pb, Ni
24	Diffusion gradient in thin-film (DGT)	Acrylamide gel	Metal-binding resin incorporated into acrylamide gel	Kinetic	Metals
25	Empore disk	Without and with polysulfone and polyethylene membrane	C ₁₈ resin	Equilibrium	Organic compounds
26	DiGiano et al. sampler	Diffusion through holes drilled into polyacrylate	Activated carbon	Kinetic	Organic compounds





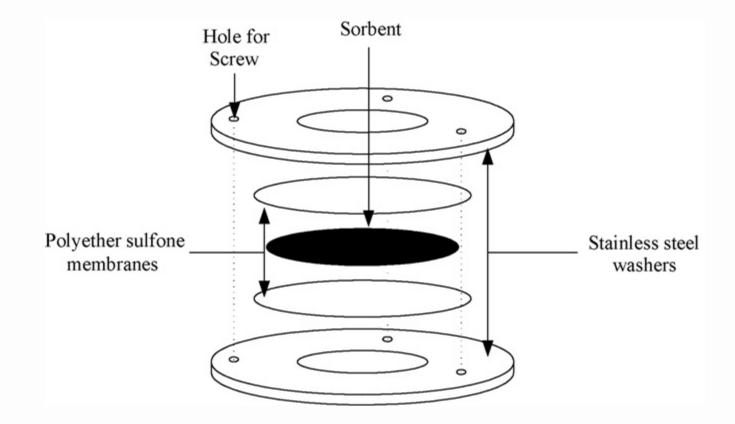
$$\frac{1}{k_{\rm o}} = \frac{1}{k_{\rm w}} + \frac{1}{K_{\rm bw}k_{\rm b}} + \frac{1}{K_{\rm mw}k_{\rm m}}$$



Calibrazione

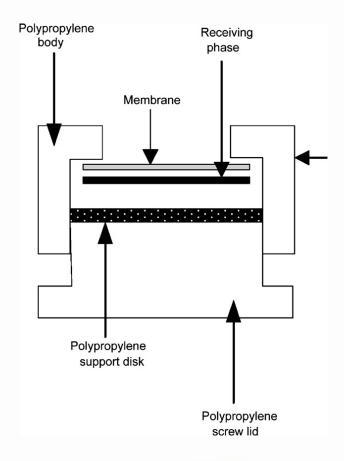
- Esposizione statica
- Batch renewal
- Esposizione in flusso
- Calibrazione in situ (uso di PRC Performance Reference Compounds)

Semi-permeable membrane device SPMD



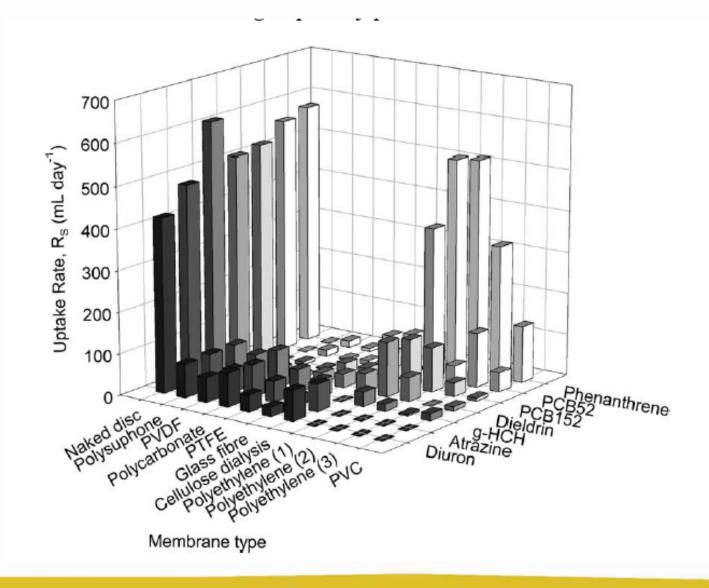
Polar Organic Chemical Integrative Sampler - POCIS

Sampling rates (R_s values) of POCIS (L day⁻¹; 41 cm² POCIS) under quiescent (non-stirred) and turbulent (stirred) conditions


Analyte	$R_{ m s}$ from quiescent renewals (L day $^{-1}$)	$R_{ m s}$ from turbulent renewals (L day $^{-1}$)
Herbicides		
Diuron ^a	0.011	0.100
Isoproturon ^a	0.034	0.200
Prescription pharmaceuticals		
Azithromycin ^a	0.048	0.270
Fluoxetinea	0.027	0.200
Levothyroxine ^a	0.021	0.120
Omeprazole ^a	0.016	0.068
Illicit drugs		
Methamphetamine	N/A^b	0.089
MDMA	N/A ^b	0.170

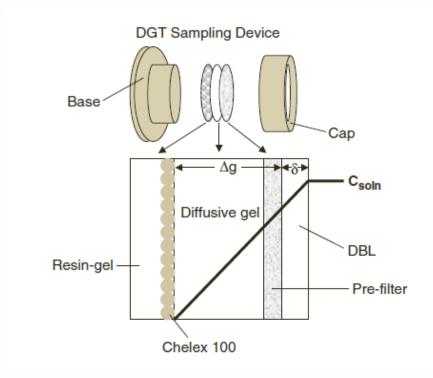
Values reported are means (n = 3).

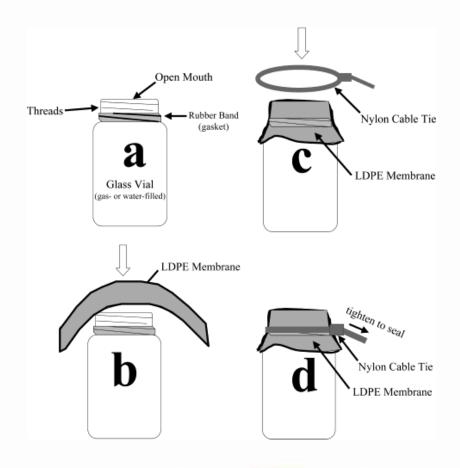
Chemcatcher

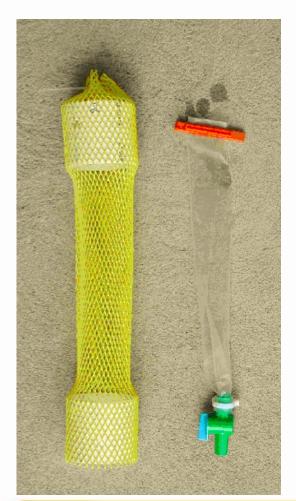


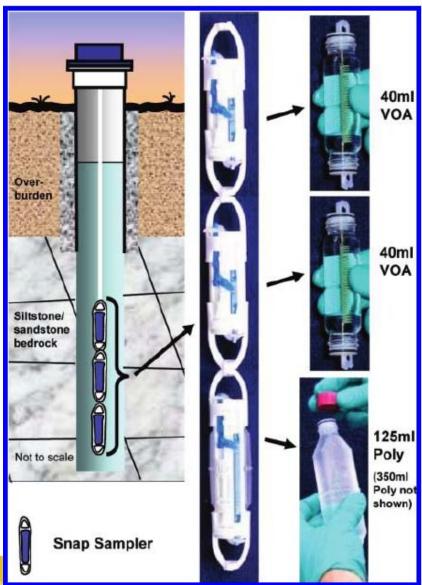
Chemcatcher configurations for integrative sampling of various pollutant classes

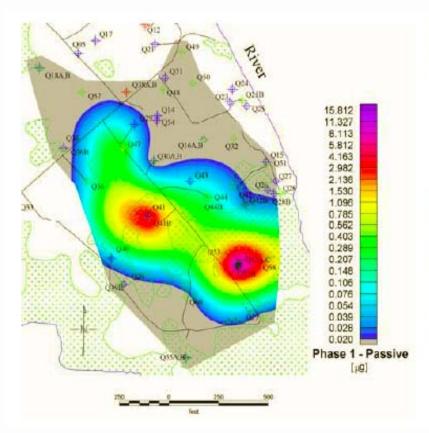
Pollutant class	Receiving phase	Diffusion membrane	
Hydrophobic organic compounds (log $K_{\text{OW}} > 3$)	$\mathrm{C}_{18}~\mathrm{Empore}^{\mathrm{TM}}~\mathrm{disk}$	Non-porous low- density polyethylene (LDPE)	
Hydrophilic organic compounds (log $K_{\text{OW}} < 3$)	$\mathrm{C}_{18} \ \mathrm{Empore}^{\mathrm{TM}} \ \mathrm{disk}$	Microporous polysulfone (PS)	
	$\begin{array}{c} \text{SDB-RPS Empore}^{\text{TM}} \\ \text{disk} \end{array}$	Microporous polyethersulfone (PES)	
Metals	Chelating Empore TM disk	Microporous cellulose acetate (CA)	
Mercury	Chelating Empore TM disk	Microporous polyethersulfone (PES)	
Organotin compounds	$\mathrm{C}_{18}~\mathrm{Empore}^{\mathrm{TM}}~\mathrm{disk}$	Microporous cellulose acetate (CA)	

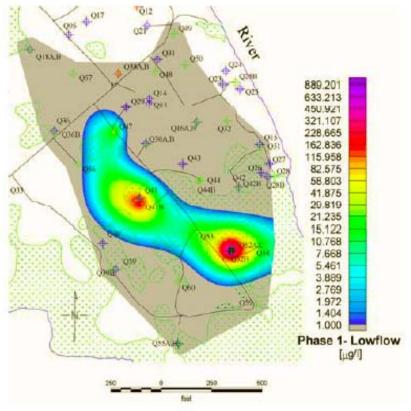



Diffusive Gradients in Thin-films - DGT


Passive diffusion (PD) sampler


Membrana da dialisi




Modulo GORE

Come scegliere? - Attivo

- Trasporto attivo di acqua indotto dal pompaggio e dallo spurgo
- Frequente prelievo di campione da zone adiacenti alla posizione di prelievo
- Campione dipendente dal flusso
 - Criticità dei volumi di spurgo e di campionamento
 - Scambi gassosi e mixing
- Può aumentare la torbidità del campione
 - Mobilizzazione di colloidi e sedimenti
 - Mobilizzazione di fasi stratificate
- Metodologia aderente alle esigenze normative

Come scegliere? - Passivo

- Nessun trasporto attivo e advezione artificiosa di acqua
- Semplice campionamento multilivello
- Fortemente dipendente da condizioni di equilibrio del pozzo relativamente all'acquifero
- Ridotto disturbo degli equilibri idrodinamici
- Bassa torbidità
 - Rappresenta meglio le "condizioni naturali
- Non è normato

