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ABSTRACT

The moderate earthquake of February 11, 2004, M;=5.2, occurred in the northeastern
segment of the Dead Sea at a depth of 17 km. Fault plane solution shows a transtensional
mechanism with a sinistral plane that strikes NNW and a dextral plane that trends E-W.
Although in general this mechanism accords with the nature of the Dead Sea Rift, none of
the nodal planes coincide with a known structure in that area. The aftershocks were
clustered west of the main shock, along WNW direction, suggesting the right lateral
plane as the preferred rupture plane. If so, it may reflect the seismogenic activity of an
intra-basinal structure.

The earthquake induced a wealth of ground effects. Exploration of the northwestern
Dead Sea coast immediately after the event revealed various phenomena as far as 40 km
away from the epicenter, mostly in the soft Holocene deposits:

a. Cracks that may relate to gravitational sliding, differential compaction and
reopening of tectonic joints.

b. Landslides along the modern sea cliffs; collapse of gully and channel banks;
sporadic rock falls.

c. Liquefaction in an artificial trench; injected mud in an open crack, and wet
sediment around boulders.

d. A tsunami up to a meter high and a rough sea in the northern Dead Sea basin.

e. A water level rise of 20-30 cm in some wells as well as a small drop in others; a
sudden drop of about a meter in the water level in a few sinkholes. However, a
lack of continuous recording does not enable us to determine the exact timing of
the change.

f. A change of radon concentration in two of the Enot Zuqim monitors, 14 hours
before the earthquake.

g. Dust, loud noise, wavy motion of the ground and shaking palm trees.

Of all units, the Ze’elim Formation was the most severely affected. It therefore seems
to be the weakest geotechnical unit in the region and thus the most vulnerable one.
According to the newly proposed “INQUA EEE scale” that grades the intensity of natural
effects, the maximum degree reached is VI. These effects tend to fade away and become

indistinguishable, and hence should be detected immediately after the earthquake.



1 INTRODUCTION

A moderate earthquake was felt in Israel, Jordan and nearby countries on February 11,
2004, 08:15SAM UTC (10:15AM local time). The focus was in the northeastern Dead Sea,
at 31.7N 35.55E, at a depth of 17 km. Local magnitude (Mp) of the main shock was 5.2
(Feldman et al., 2004) and was followed by aftershock activity (Geophysical Institute of
Israel (GII) data; Wust-Bloch and Lazar, 2004) (Fig. 1).

Seismic activity along the Dead Sea Transform (DST) is well known from
paleoseismological evidence (Reches and Hoexter, 1981; Marco et al., 1997; Neimi,
1997; Amit et al., 1999; Zilberman et al., 2000; Klinger et al., 2000a, 2000b), seismites
and ground effects (Wachs and Levitte, 1981, 1984; El Isa and Mustafa, 1986; Niemi and
Ben-Avraham, 1994; Marco and Agnon, 1995), historical documents (Amiran et al., 1994
and references therein) and instrumental recordings (mainly International Seismological
Summary (ISS) (1918-1963); International Seismological Centre (ISC) (1964-1993,
1991, 2000); Institute for Petroleum Research and Geophysics (IPRG) (1982-1993); and
GII (1996, internet website, Bulletins). This activity seemed to have reached a maximal
magnitude of about 7-7.5. The seismicity along the DST is concentrated mostly along the
deep basins of the Gulf of Elat, the Dead Sea and the Sea of Galilee (van Eck and
Hofstetter, 1990; Salamon et al., 1996; Shapira, 1997). In fact, the 11/2/2004 earthquake
was the sixth M >5 event recorded in and around the Dead Sea basin during the last
century (Fig. 2). This basin is the largest inland pull-apart structure along the DST
(Garfunkel, 1981; Garfunkel and Ben-Avraham, 2001). Thus, neither the occurrence of
this event, nor its location and magnitude, was exceptional. However, exploration of the
Dead Sea coasts immediately after the earthquake revealed a wealth of earthquake-
induced ground effects that were hardly documented in Israel after former moderate
events.

The time span between strong earthquakes in this region is large (Rotstein, 1987) and
therefore it is necessary to obtain maximum data from the moderate shocks that hit the
region from time to time. Though extrapolating ground response in moderate events onto
a strong shaking is not necessarily linear, this occasion is still an invaluable opportunity
to document the resulting effects and characterize the nature of the ground around the

epicentral area.
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Fig. 1. Map of the 11/2/2004 earthquake sequence and the associated events during the time
period 1/1/2003-30/9/2004 (GII catalog), superimposed on the geological map (Sneh et al.,
1998). Note that most of the activity is concentrated along the northeastern margins of the
Dead Sea. EMSC and USGS main shock epicenter locations are also shown. Potentially Active
Faults (PAF) relate only to the western side of the Dead Sea while the eastern side has not

been yet mapped.
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Fig. 2. All M >3 recorded events of the last 80 years in and around the Dead
Sea, superimposed on the geological map (Sneh et al., 1998). Data is taken
from the GII catalog that seems to be complete for this threshold during the
last 25 years. Potentially active faults (PAF) relate only to the western side of

the Dead Sea, the eastern side has not been yet mapped.




1.1 Earthquake induced ground effects

Earthquakes cause many environmental effects. These can be classified under various
subjective categories such as natural phenomena (e.g., ground failure, hydrological
anomalies), hazardous factors (e.g., surface faulting, site amplification), macroseismic
effects (e.g., damage to man-made structures) and others. Here we concentrate on the
natural effects, with an emphasis on the hazard factors that may put at risk man-made
structures. Study of these factors in Israel has been based mainly on worldwide
experience. The 11/2/04 event however, is an opportunity to observe natural effects that
are typical of the Dead Sea area and thus improve our evaluation of seismic hazards in

that area in particular.

1.2 Previous reports on seismically induced ground effects in Israel

Earthquake induced ground effects in Israel were already reported in regard to strong
events. Prehistoric seismites in the Lisan deposits near the Dead Sea were described by
El-Isa and Mustafa (1986) and Marco and Agnon (1995). Amiran et al. (1994, and
references therein) mentioned tsunamis along the Mediterranean coast, seiches in the
Dead Sea and the Sea of Galilee, blockage of the flow of the Jordan River because of a
landslide of the Lisan marl and floating of large asphalt blocks in the Dead Sea. The last
strong earthquake in the Dead Sea, July 11, 1927, M=6.2, caused cracks in the ground of
the Jordan valley and near the Dead Sea, a stop of the flow of the Jordan River by a
landslide, and a seiche in the Dead Sea (Amiran et al., 1994; Ben-Menahem et al., 1976;
Avni, 1999). More comprehensive documentation of failure features of cracks and joints,
rockfalls, sandblows, tsunami, breaking of coral reefs, as well as water level fluctuations,
dust and noise, was collected by Wust (1997) after the M,,=7.2, November 22, 1995,
Nuwieba earthquake. It is interesting to note that some biblical descriptions may have
already associated some natural phenomena with strong earthquakes (e.g., Shalem 1949;
Bentor, 1989 and Nur, 1991), though not necessarily as a cause and effect.

While these descriptions are all related to strong earthquakes, ground effects caused

by moderate events are barely described. Shalem (1945) discussed whether the whitening



of the Dead Sea in the summer of 1943 was related to the September 10, 1943, M;=4.7
earthquake located east of the Dead Sea. Arieh et al. (1977) mentioned landslides and a
rock avalanche after the Jordan Valley earthquake of September 3, 1973, 4'%2 Richter
magnitude, and Arieh et al. (1980, 1982) reported slumping of shale beds and talus as a
result of the Dead Sea earthquake of April 23, 1979, mb=5.1.

1.3  Geology of the affected area - the northwestern Dead Sea coast

Nearly all of the seismic effects of the February 11, 2004 event were found within the
Dead Sea pull-apart basin, along the northwestern coast of the lake. Most affected of all
was the uppermost unit that was deposited during the Holocene in the lake that occupied
the basin and by floods that deposited alluvial material interbedded with the lake
sediments. This unit is the Ze’elim Formation (Yechieli et al., 1993; Ken-Tor et al., 2001)
and it consists of unconsolidated laminated deposits of soft detritus and evaporites
(mainly aragonite) that are intercalated landward with unconsolidated alluvial material
(Fig. 3). The unit is being exposed in recent years because of the continuous drop of the
Dead Sea water level and retreat of the waterfront. The water table near the lake is
shallow and water discharges in many places close to the shoreline; therefore, the water
content in this unit is high.

Overall, the soft (weak) lithology, high water content and young age of the Ze’elim
Formation are of critical importance in determining its geotechnical nature and

consequently its response to seismic accelerations.
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two outcrops exposed in different gullies 300m apart (Ken-

Tor et al., 2001).



2 THE 11/02/04 EARTHQUAKE

2.1 Seismotectonics

2.1.1 The main event

The earthquake occurred on February 11, 2004, 08:15AM UTC, in the northeastern
Dead Sea and was followed by a sequence of aftershocks. The earthquake parameters as
determined by the GII, European-Mediterranean Seismological Centre (EMSC) and the
United States Geological Survey (USGS) institutes are presented in Table 1.

Table 1. Parameters of the main shock

*
Source of data / GII EMSC USGS
parameter
Origin time (UTC) 08:15:03 08:15 08:15:03
5.2 (Myp)
Magnitude 5.1 (mb) 5.1 (mb) 5.1 (M)
5.2 (Mm)
N 31.7 31.70 31.68
E 35.56 35.50 35.49
Depth (km) 17 15 25.8

* Source of data:

GII:  http://www.gii.co.il/heb/default.html

EMSC: http://www.emsc-csem.org/cgi-bin/ALERT alertfile.sh?S0841&INFO
USGS: http://neic.usgs.gov/neis/eq_depot/2004/eq_040211/neic_etal m.html

2.1.2 The main shock mechanism

Three different fault plane solutions of the main shock were available, all of them
pointing towards a similar transtensional mechanism (Figs 4, 5, 6 and Table 2):

A. First motion solution based on first P-wave arrivals is presented in Figure 4 and
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planes, and quality parameters. The parameters are also listed in Table 2. Stations that
does not match the solution are listed on the upper right side and uncertainty distribution
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Table 2. This solution was calculated by using the FPFIT and FPPLOT program
(Reasenberg and Oppenheimer 1985). (see Salamon et al., (2003) for detailed description
of the procedure.)

B. Waveform inversion (Fig. 5 and Table 2) by use of teleseismic long-period P- and
SH- broad-band P-waveforms, and first motion polarities of P- waves recorded by Global
Digital Seismograph Network (GDSN) stations in order to determine the source
parameters of the earthquake. The mechanism was calculated by the McCaffrey and
Aber’s (1988) version of Nabelek’s (1984) inversion procedure which minimizes in a
weighted least-squares sense, the misfit between the observed and the synthetic
seismograms. The shapes and amplitudes of the long period P- and SH-, and broad-band
P-waveforms recorded in the distance range of 30 — 90 degrees, for which signal
amplitudes were sufficiently large are then compared with the synthetic waveforms (Fig.
5). This iterative inversion procedure continues until a minimum misfit between the
observed and the synthetics waveforms is obtained. Seismograms generated by
combining direct (P, S) and reflected (pP and sP or sS) phases from a point source
embedded in a given velocity structure were weighted according to the azimuthal
distribution of stations. Amplitudes were adjusted for geometrical spreading, and for
anelastic attenuation using a Futterman’s (1962) Q operator, with t*=1 s for P and t*=4 s
for SH. The inversion routine adjusts the strike, dip, rake and depth of the fault, scalar
seismic moment and source time function, which is described by a series of overlapping
isosceles triangles (Nabelek 1984) whose number and duration are selected. The receiver
structure is assumed to be a homogeneous half space.

A depth of 18 km and a seismic moment of 8.5x1016 Nm with a simple source time
function of about 4s were determined. Synthetic waveforms were calculated for a half
space with velocity Vp=6.5 km s-1, Vs=3.7 km s-1 and p = 2.8 gr cm-3.

C. Another solution (fast CMT) was published by the EMSC a few hours after the
event (Fig. 6 and Table 2).

Overall, the three solutions are consistent and show that the sinistral nodal plane
strikes about NNW and plunges to the west, and the dextral nodal plane strikes E-W and
dips northwards. Though generally this transtensional mechanism is in accordance with

the nature of the DST as a leaky transform, the sinistral plane deviates about 30°



anticlockwise off the trend of the transform. Moreover, the dextral plane deviates about
25° clockwise off the general trend of the transversal faults inside the Dead Sea basin.
Therefore, it is not clear which structure in the basin triggered this event.

The aftershock sequence seems to cluster west of the main shock and spread in the
WNW direction, thus favoring the dextral nodal plane as the actual rupture plane. If so, it
reflects the activity of the faults that accommodate the extension parallel to the transform
and drives the growth of the basin in a N-S direction (Garfunkel and Ben-Avraham,
2001). However, we are not aware of a specific fault in this location or whether the
extension along the basin is accommodated by normal faulting, block rotation or a

combined mechanism.

Table 2. Parameters of the main shock mechanism

Parameters GII ITU EMSC
Type. of First motion Wave fprm CMT
solution Inversion

NP1 337/52/-25 348/65/-12 337/51/-35

Strike/dip/slip

NP2 80/70/-140 83/79/-155 91/64/-135

Strike/dip/slip
Moment ] 8.453%10%*23 10%%23
Dyne*cm

GII: See Figure 4.
ITU (Istanbul Technical University): See Figure 5.
EMSC: http://www.emsc-csem.org/cgi-bin/ALERT _datafile.sh?S0710&MT; See Figure 6.

The discrepancy between the fault plane solution that reflects the seismotectonics of
the deep structure and the surface geology of the Dead Sea basin, emphasizes the inherent
difficulties encountered in combining these two layers of data. Our up-to-date knowledge
does not enable us to fully understand how the subsurface structures are related to the

surface geology. It is interesting to note in this context, the NNW deflection of the



northeastern border fault of the basin as delineated by Garfunkel and Ben-Avraham
(2001) that may coincide with the sinistral nodal plane. Whatever the preferred fault
plane is and however impressive the ground shaking was, this earthquake was a result of
a rupture area of a few km” only, at a depth of about 15 — 20 km. Thus, it does not

necessarily display the activity of a primary structural component of the basin.

2.1.3 The aftershock sequence

The main event was followed by a sequence of a few tens of smaller events, the
strongest of which occurred a couple of days later and reached a magnitude of 3.7. The
activity lasted about half a year, concentrated west of the main shock and distributed in a

preferred WNW direction (Table 3 and Fig. 1).

2.1.4 Associated clusters

Seismogenic activity in the Dead Sea Basin was not limited to the 11/2/2004
sequence at that time. Two other series were also recorded within a time span of a year.
All three clusters occurred along the eastern margins of the Dead Sea basin.

The first cluster preceded the February shocks about 22 km southwards, opposite ‘En
Gedi (Fig. 1 and Table 3). The main shock occurred on 31/12/03, reached a local
magnitude of 3.7 at a depth of 14 km, and was followed by 4 aftershocks, the last and the
strongest of which was triggered simultaneously with the February sequence. The second
series may have began before the February event, about 40 km southwards, near the
northern tip of the Lisan peninsula, and culminated after it, on 15/3/2004, with an M;=4.3
main shock (Fig. 1 and Table 3). It is interesting to note that the 7/7/2004 M;=4.7 event
occurred 30 km north of the February sequence, in the Jordan Valley, outside the Dead
Sea basin (Fig. 1 and Table 3).

The close timing and aerial distribution of these clusters are clear, yet its interacting
mechanism, if one exists, is not understood. Possibly, the first three clusters that occurred
along the tip of the eastern segment of the transform that comprises the Dead Sea basin,
may have induced stresses that triggered the fourth event along the continuation of the

transform, outside the basin on the nearby left-stepping segment.



Table 3. Aftershock parameters and other events associated with the 11/2/2004 earthquake.
GII catalog: http://www.gii.co.il/heb/default.html).
Area (old Israeli grid) X:170-220; Y:000-160, time span 1/1/2003-30/9/2004.

Date c.)r::'g: ’ Lat |Long | X | Y WM’;W’MSK ‘Type ’ Region
| 2003-04-06 [10:51:44 [ 31.48][ 3542 [ 189.4 [ 989 [14[23[ 0 [0 [ 0 | [ Dead Sea
| 2003-04-19 [03:42:39 [31.41[3552[199.4 [ 905 [17[21[ 0 [0 0 | [ Dead Sea
| 2003-06-17 [ 17:04:02 [ 31.33[35.41 [ 189.1 [ 825 [9 [21[ 0 [ 0 [ 0 | [ Dead Sea
| 2003-06-17 [18:16:22 (3134 [ 3539 [ 1869/ 831 [11 [ 2 [0 [0 [ 0 | [ Dead Sea
| 2003-07-23 [03:03:24 [31.21][ 3538 [ 1864 [ 69 [13[28[ 0 [ 0 [ 0 [ PE [ DeadSea
| 2003-08-15 [ 23:56:21 [ 31.24 [ 3538 [ 1858 [ 72 [10/[28[ 0 [29][ 0 | [ Dead Sea
| 2003-09-17 [16:17:31 [ 31.3 [ 3553 [ 2003 [ 78.9 [21[ 3 [ 0 [28] 0 | [ Dead Sea
| 2003-12-31 [11:19:16 [ 31.42 [ 3556 [ 202.8 [ 91.8 [ 5 [33[ 0 [3.1[ 0 | [ Dead Sea
| 2003-12-31 [ 20:44:41 [ 315 |[ 3553 200 [ 100.8][14[3.7][ 4 [38][ 3 |[ F |[ Dead Sea
| 2003-12-31 [ 20:55:26 [ 31.51 [ 3552 [ 1987 [ 101.7 [14[26[ 0 [ 0 [ 0 [ Dead Sea
| 2003-12-31 [21:01:47 [ 3151 [ 3552 [ 1987 [ 101.7 [14 [24[ 0 [ 0 [ 0O | [ Dead Sea
| 2003-12-31 [21:12:16 [ 31.49[ 3551 [ 198 [ 100 [13[23[ 0 [0 [ 0 | [ Dead Sea
| 2004-02-11 [08:15:03 [ 31.7 |[ 35.56|[ 202.3 [ 123 [[17/[5.2][5.1][52][ 6 |[ FS /[ Dead Sea
| 2004-02-11 [ 09:09:15 [ 31.73'[ 3552 [ 1984 [ 126 [15[25[ 0 [27[ 0 | [ Dead Sea
| 2004-02-11 [[09:21:20 [ 31.78 [ 3553 [ 199.7 [ 132 [18/[23[ 0 [25[ 0 | [ Dead Sea
| 2004-02-11 [12:33:51 [ 317 [ 355 [ 197 [1232[15[25[ 0 [27[ 0 [ Dead Sea
| 2004-02-11 [16:17:49 [ 31.71][ 355 | 197 [1242[14[22[ 0 [25] 0 | Dead Sea
| 2004-02-11 [17:31:17 [ 31.72]] 355 [ 1965/ 1254 [16/[26[ 0 [28[ 0 | [ Dead Sea
| 2004-02-11 [19:36:14 [ 31.721[ 3551 [ 197.6 [ 1248 [17[26[ 0 [27] 0 | [ Dead Sea
| 2004-02-12 [04:09:41 [ 31.71[ 3551 [ 198.1 [ 124.2[ 16 [26 0 [27[ 0 | [ Dead Sea
| 2004-02-13 [01:23:21 [ 31.71 [ 3549 [ 1959 [ 1239 [ 16 (26| 0 [28[ 0 | [ Dead Sea
| 2004-02-13 ["05:00:25 [ 31.71 [ 35.49 [ 1962 [ 1244 [ 16 [24[ 0 [26[ 0 | [ Dead Sea
| 2004-02-13 [ 06:40:14 [ 31.71[ 3554 [ 200.4 [ 1245 [14[21[ 0 [23][ 0 | [ Dead Sea
| 2004-02-13 [07:02:36 [ 31.7 [ 3554 [ 2007 [ 1231 [16[37[ 0 [36[ 3 [ F [ DeadSea
| 2004-02-13 [18:57:21 [ 31.7 [ 3557 [ 203.1 [ 122.8][ 16 [23[ 0 [26[ 0 | [ Dead Sea
| 2004-02-17 [07:22:15 [ 3151 [ 3552/ 198.6 [ 102.1 [12/[2.9][ 0 [2.8[ 0 | [ Dead Sea
| 2004-02-17 [ 07:26:58 [ 30.71/[ 35.26 [ 174.9 [ 129 [10[22[ 0 [ 0 [ 0 | [ Arava Valley
| 2004-02-18 [05:29:36 [ 31.71[ 3553/ 199.4 [1242[17 [ 2 [ o [0 [ 0 [ Dead Sea
| 2004-02-18 [17:42:45 [ 3164 [ 3552/ 1985 [ 116.8/[13/[21[ 0 [22][ 0 | [ Dead Sea
| 2004-02-19 [01:18:01 [ 31.71[ 355 [ 196.9 [ 124.1[17/[26[ 0 [27[ 0 | [ Dead Sea
| 2004-02-19 [[05:22:07 [ 31.72/[ 35.53 [ 199.8 [ 124.9 [16 [2.3[ 0 [22] 0 | [ Dead Sea
| 2004-02-19 [05:47:35 [ 31.72/[ 355 [196.7 [ 1251 [17 [ 3 [ 0 [28] 0 | [ Dead Sea
| 2004-02-20 [04:46:41 [31.72 [ 355 [ 196.9 [ 1252 [16 [2.8[ 0 [28][ 0 | [ Dead Sea
| 2004-02-20 [05:04:04 [31.72[ 355 [197.2 [ 125.7 [17 [25[ 0 [25[ 0 | [ Dead Sea
| 2004-02-24 [02:11:32 [ 31.72/[ 35.49 [ 196.2 [ 1255 [17[35[ 0 [31[ 3 [ F || Dead Sea
| 2004-03-04 [ 21:22:54 [ 31.72/[35.46 [ 1936 [ 125 [16[21[ 0 [24][ 0 | [ Dead Sea
| 2004-03-11 [02:07:05 [ 31.7 [ 3551 [ 197.8 [ 123416 [21[ 0 [22][ 0 || [ Dead Sea
| 2004-03-15 [ 23:49:56 |[ 31.37 [ 35.53][ 200.3 [ 86.1 |[13][4.3][44][ 4 [ 3 ][ F |[ Dead Sea
| 2004-04-15 [[17:49:07 [ 31.72[ 35.49 [ 195.9 [ 1247 [15[23[ 0 [26/ 0 | | Dead Sea
| 2004-05-13 [ 12:56:29 [ 31.71[ 355 | 197 [1243 [14[26] 0 [28]] 0 | [ Dead Sea
| 2004-05-25 [09:17:527[31.68'[ 35.49[ 1958 [ 121.1 [ 15 [25[ 0 [26] 0 | [ Dead Sea
| 2004-05-31 [ 12:35:45 [ 31.72/[ 35.47/[ 194.4 [ 1253 [ 16 [2.8][ 0 [29] 0 | | Dead Sea
| 2004-06-03 [ 13:18:52 [ 32.02/[35.49 | 196 [158.6 [ 4 [32[ 0 [32][ 3 [ F [ E.Shomron
| 2004-07-05 [09:06:39 [ 31.71/[ 3551 [ 1975 [ 1237 [ 16 [24[ 0 [24]] 0 | [ Dead Sea
| 2004-07-06 [10:11:01 [ 31.42/[ 3566 [211.9 [ 919 [ 9 [23 [0 [0 [ 0 | [ North Jordan
| 2004-07-07 [ 14:35:08 [ 31.97 [ 35.55 [ 201.8][ 1532 [ 13/[4.7][48][46]] 4 [ F [ JordanV.
| 2004-07-09 [12:16:28 [ 31.69 [ 35.57 [ 203.8 [ 121.8 [ 16 [3.7[ 4 [36/] 3 [ F | Dead Sea




2.2 Earthquake induced ground effects

Surface seismogenic ground effects tend to degrade rapidly because of the weather
and human activity. It is therefore necessary to document these effects soon after the
earthquake while they are still notable.

Immediately after the earthquake and in the days following, teams of the Geological
Survey of Israel explored the Dead Sea shorelines, mainly along the Qalya, Darga and
Ze’elim coasts, and the southern Jordan River area in search of earthquake-related
phenomena. We also interviewed rangers of the local nature reserves and tourist resorts,
and local residents who are familiar with the area for any natural effects or unusual
phenomena that may relate to the reported earthquake. The findings are presented in

Figure 7 and Table 4, and described herein.

2.2.1 Cracks

Cracks were observed along the shore near the Qalya and Darga coasts. They cut
through the soft lake sediments and loose alluvial material of the Ze’elim Formation and
vary in nature from place to place. They appear sporadically or in clusters; in a wide
spectrum of directions; in a linear, arcuate or zigzag pattern; in lengths of a few meters
and sometimes up to tens of meters; with a minimal opening and up to a few millimeters
offset; as newly formed or reopening of previously existing cracks; and in a spacing of
tens of centimeters to a few meters. Each group of cracks seems to be of a homogeneous
nature. Overall we distinguished the following types:

a. Cracks parallel to the sea cliffs that face the waterfront: These are linear cracks,
oriented parallel to the seashore and normal to the slope gradient (Photo 1). They
seem to indicate low angle gravitational sliding of the soft sediments towards the
sea and show the initial stages of slope failure.

b. Arcuate cracks: These cracks are concave towards the sea and appear at the
periphery of developed rotational slumps (Photo 2).

c. Cracks that strike oblique to the shoreline: Detailed mapping of such cracks was
carried out at the Darga coast and is shown in Figure 8. The general trend of these
cracks coincides with the orientation of the principal o, stress of the Dead Sea

stress field (Eyal and Reches, 1983). These cracks are also sometimes associated
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Fig. 7. Location map of the seismogenic effects observed after the 11/2/2004
earthquake along the northwestern Dead Sea shore. See text and Table 4 for a
detailed description.




with localized vertical offset of up to a few centimeters (Photo 3). They seem to
reflect differential compaction of loose sediments or of zones that were formerly
saturated before the drop of the sea level, probably due to the seismic loading.
Reopened cracks: In many clusters the cracks are linear and parallel. They are
oriented parallel, or oblique, or normal to the waterfront - each area in a preferred
direction, evenly spaced and with a minimal offset or opening (Photos 4a, 4b).
The cracks dissect the lake sediments of the Ze’elim Formation and resemble
tectonic jointing. In certain locations, they are closed and partly covered by intact
alluvial material. Thus we conclude that they were formed before the earthquake
and reopened locally due to ground shaking. Interestingly, some areas along the
“modern” coast are covered by long linear stromatolitie-like features, spaced a
few meters apart (east of Enot Zuqim). Nishri and Nissenbaum (1993) suggested
that these are Mn-enriched carbonates that were chemically precipitated in the
shallow water near the shore. These incrustations seem to accumulate in
superposition with the existing linear cracks. Therefore, we may assume that the
formation and the geometry of these sedimentary features were tectonically
controlled. These relationships certainly deserve more careful investigation.
‘Superimposed’ cracks: A few seismogenic cracks along the Darga coast were, in
part, superimposed on preexisting mud cracks (Photos 5a, 5b) and even on a
fractured pebble (Fig. 8). The seismogenic cracks broke the intact sediment below
the dried crust of the mud and reopened the mud cracks on the surface. Generally

these cracks are linear, but turn zigzag along preexisting mud cracks.

2.2.2 Slope failure

Failure of slopes were observed along the shorelines and few tens of meters

inland, between the Qalya and Enot Zuqim coasts, and were associated with open

cracks around its margins. We also noted collapses along the steep gully banks of the

Enot Zugim, Hamme En Gedi and N. Ze’elim drainage systems that cut through the

newly exposed section of the Ze’elim Formation. Landslides were also reported in the

western Ma’ain area, Jordan, on the eastern side of the Dead Sea (R. Husseini, Jordan

Times, Thursday, February 12, 2004). Overall a few types of slope failure could be
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Fig. 8. A detailed map of some seismogenic cracks along the Darga coast.
Blue ellipse in the upper photo indicates mud spilled out of the seismogenuc
crack. Blue circles in the lower photo indicate parts of the pebble that were
chipped (possibly during the propagation of the seismogenic crack). North of
the map and photos - upwards.



distinguished:

a. Rotational slumps: Rock masses of the soft unconsolidated Ze’elim section that
collapsed towards the sea (Photo 6a). The slumps occurred along the present sea
cliffs that rise about 5 m above the sea level and disrupted about a 25 m wide strip
of the cliff. A few of the slumps were triggered above saturated layers that
discharge ground water. Another slump occurred along an artificial gully bank that
drains the Hamme En Gedi hot springs (Photo 6b, courtesy of E. Raz).

b. Collapses: Fall of rock mass were noted along the newly formed gullies of the N.
Ze’elim (Photo 7 and the cover photo) and the Qalya seashore cliffs (Photo 8).
Other collapses were reported to occur in a travertine rock near En Shulamit, N.
Dawid; in open fissures and a sinkhole that cut through the talus along the
foothills near N. Samar and N. Tur (Z. Motsan, pers. comm., 2004); and in hard
carbonate (layered and fractured) rocks of the Judea Group at the base of a nearly
vertical cliff in N. Arugot (Photo 9).

c. Sporadic rockfalls: A large boulder fell in N. Hazezon (I. Haviv, pers. comm.,
2004). Rangers of the Israecl Nature and National Parks Protection Authority
(INNPPA) reported sporadic rocks falling along slopes composed of poorly
cemented alluvial conglomerate in N. Qumeran, N. Dawid and near En Gedi.
Rangers of the Soreq Cave, 50 km west of the epicenter, reported low noises of
objects rolling on the cave floor, probably of loose rocks and broken speleothems
(M. Bar-Matthews, A. Ayalon and E. Kagan, pers. comm., 2004). Another
interesting report mentioned sporadic rock falls as far as 150 km north-west of the

epicenter, in N. Bezet, Upper Galilee! (D. Wachs, pers. comm., 2004).

2.2.3 Liquefaction

Small sand boils and water ponds (Photos 10, 11) were observed in an artificial trench
near the Qalya coast. The trench is a few meters wide and is filled with the loose
material. The liquefaction occurred at the bottom of the trench and was associated with
open fissures along the inner banks of the trench. These fissures may have formed as a
result of minor lateral spreading on top of the liquefied material inside the trench. The

sand cones were a few centimeters wide and the water ponds a few tens of centimeters

11



long. Clay, silty material and foam were associated with the sand boils and the ponds.

Granulometric (dry) analysis of the liquefied material is presented in Figure 9a
relative to ranges of grain-size distribution for liquefaction susceptible soils suggested by
Tsuchida (1970) and also in Figure 9b in respect to material that was liquefied during the
Nuweiba earthquake (Wust, 1997). Originally, the material examined contained 32 wt.%
salt and although the profile of the 11/2/2004 material is somewhat different from that of
the Nuweiba event, it is still within the boundaries of most liquefiable soils.

Along the Darga coast, we also observed a mud spill along an open crack (Photo 12
and Fig. 8) and wet sediment around sporadic boulders (Photo 13). The mud and the

water were probably injected during the earthquake.

2.2.4 Tsunami

Locals at the Qalya coast reported a wave of up to a meter high and a rough sea in the
northern part of the Dead Sea soon after the earthquake. A photograph taken a half an
hour after the earthquake (courtesy of C. Barghoorn, Qalya) shows a wavy sea near the
Qalya shore and also an unusual line in the sea that may have possibly formed just after
the earthquake (Photo 14). Residents at En Gedi however, did not notice any unusual
wave in the sea.

In the afternoon of that day and the day after, we noticed some water ponds, located a
few meters inland along the Qalya and the Darga coasts (Photo 15). In a few places along
these coasts, we observed some pebbles lying on top of the washed soft rocks that form
the sea shore (Photo 16). Since the sea was nearly flat in the morning and the afternoon of
that day, we presume that the ponds and the pebbles (tsunamite?) were emplaced by the

run-up wave of the tsunami.

2.2.5 Sinkholes

A drop of about 1 m in the water level in some ponds that fill sinkholes in the Shalem
2 site, south of Mineral Beach, was observed the day after the earthquake. The drop
reported by the manager of ‘Mineral Beach’ resort may have occurred during or

immediately after the earthquake and was associated with a loud noise.

12
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Field observations suggest that the drop occurred suddenly. Small ponds were left
around the upper margins of the sinkhole and above the level of the current pond,
indicating that until recently (before the earthquake), they were part of the same water
body. Very wet mud found along the slopes of the sinkhole (Photo 17a) also supports this
assumption. Stream line features and open cracks that appear in the wet mud at the
bottom of the sinkhole (Photo 17b) imply a rapid drop in the water level of the pond. Had
the water level dropped gradually and slowly, the upper margins of the sinkhole should
have been found dry.

Two new sinkholes were discovered near En Gedi after the earthquake by E. Raz
(pers. comm., 2004). However, many new holes developed along the Dead Sea coast
during the last few years and it is not clear that these two sinkholes collapsed because of

the earthquake.

2.2.6 Water level in wells

A 20-30 cm rise of the water level in some wells along the northwestern coast of the
Dead Sea, as well as a small drop in others, was measured (Table 5 and Figures 10a,
10b). The readings were taken the day after the earthquake and were compared with the
previous records taken 11 days before the earthquake on 1/2/2004. However, a lack of
continuous recording does not enable us to determine the exact timing of the change.

Rangers of the Enot Zugim (En Fashkha) nature reserve noticed a clear rise of the
water level in the ponds and increase of flow in the springs (E. Baruchi, pers. comm.,
2004)

Flexer and Guttman (2004) reported a sharp rise of 4.5 m in the water level of the
Ravaya 6 well, 45 minutes before the earthquake. The water level kept rising another 1.2
m after the event and then dropped down to its original level. The well is located in the
rift valley, 75 km north of the epicenter and the pressure head of the Cenomanian-
Turonian aquifer of the region is continuously monitored in it. Such a precursory water
level anomaly is exceptionally high, even if associated with strong earthquakes (Roeloffs,

1988) and therefore should be verified carefully.
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Table 5. Change of water level in wells along the northwestern coast of the Dead Sea

Well Water level change Coordinates Di§tance from Remarks
(cm) New Israeli Grid | epicenter (km)

Fashkha -6 243658/624226 10 Shallow drill
Radon 1** +25 242660/623120* 11 -
Radon 2** + 36 242660/623120* 11 -
Tureiba T/1 No change 238720/614290* 17 Upper aquifer
Tureiba T/2 No change 238860/614680* 17 Upper aquifer
Tureiba T/4 -5 238530/613090* 18 Upper aquifer
Tureiba T/4 +12 238530/613090* 18 Lower aquifer

Mineral 1 +28 237739/606320 23 -
Mineral 2 +23 237886/606291 23 -
Mineral 3 No change 237810/606169 23 -
Qedem east +15 237710/602056 26 -
En Gedi 1 +6 237441/596557 31 -
En Gedi 3a + 11 235900/592000%* 35 -
En Gedi 6 +4 237396/596199 31 -
Ze’elim 1 -6 233892/583929* 43 -

* Estimated coordinates

** Also site of the 17W Enot Zuqim Gamma detectors (radon concentration)
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Fig. 10a. Change of water level (blue profile) in the Radon 1 and 2 wells
associated with the 11/2/2004 earthquake (red bar).
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Fig. 10b. Change of water level (blue profile) in the Mineral 1 and 2 wells
associated with the 11/2/2004 earthquake (red bar).




2.2.7 Radon flux

A sudden break in the daily pattern of the radon concentration was registered by two
of the Enot Zuqim monitors, 10-14 hours before the earthquake (Fig. 11). The continuous
monitoring was carried out by two Gamma detectors at site 17W, near the Radon 1, 2
wells (Table 5), in 15 minutes registration intervals (Steinitz et al., 2003). The signal
displayed in Figure 11 presents the residual of the 25 hour sliding average and it appears
that the typical daily pattern is disrupted 10-14 hours prior to the earthquake. These

phenomena are under further investigation.

2.2.8 Other natural effects

Dust was seen (by Enot Zuqim rangers) along the northeastern coast of the Dead Sea
immediately after the earthquake. The dust could have possibly risen because of
landslides.

Noise: Many people both near and far away from the epicenter, reported a loud noise
associated with ground shaking.

Wavy motion of the ground: A few people saw a wavy motion of the surface of the
ground during the earthquake.

Shaking palm trees along the Darga coast and also in En Gedi were reported by the
planters.

Long distance shaking: People in the NW Galilee, as far as 160 km NNW of the
epicenter, were frightened (Kibbutz Elon), ran outside (Arab-el-Aramsha village) and
reported sporadic rockfalls in N. Bezet (D. Wachs, pers. comm., 2004). These could be
measured as degree V in the MSK and IV in the INQUA intensity scales, higher than is

expected for that unusually long distance.

2.2.9 Doubtful effects

Some phenomena attracted our attention as seismogenic effects, although they appear
in the area from time to time not necessarily associated with an earthquake and we could
not rule out the possibility that they were not induced in another manner. Nevertheless,

these effects are noted because it is reasonable to assume that they might have been
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induced by the earthquake.
Small turbidities were seen along the waterfront between the En Gedi and the Darga
coasts (Photos 18a, b), five hours after the event. They seemed like clouds of suspended
material in the water. However, turbidities in the Dead Sea appear from time to time, e.g.,
during floods and winter flow of the Jordan River (Raz, 1993). If triggered by a seismic
shock, these seismites could have formed by the shaking of loose unconsolidated
sediment at the bottom of the sea, by local submarine landslides and also by wash of
alluvial material from the coast into the sea by the returning tsunami wave.
An unusual line in the sea was photographed (Photo 14) near the Qalya shore, about
half an hour after the earthquake. This odd line was reported to move very slowly
northwards. However, such lines have been seen previously, not necessarily associated
with an earthquake (C. Barghoom, pers. comm., 2004). Raz (1993) presents a very
similar front line that was formed by the large inflow of the Jordan River water into the
Dead Sea during the 1992 rainy winter.

Since the water column of the Dead Sea is not presently layered, this line could not be
considered as ‘whitening’ (crystallization of gypsum) triggered by seismogenic mixing of

the upper water layers of the sea. At this stage we are not certain of the origin of this line.

3  DISCUSSION

Most of the findings were observed, photographed and documented a few hours and
up to a few days after the earthquake. A number of the effects were directly observed
during the earthquake or immediately after it: loud noise, tsunami and a rough sea, dust,
shaking of palm trees, wavy motion of the ground, collapse of sporadic boulders and the
unusual water line.

Some of the effects occur regularly in the region, as part of the ongoing degradational
processes and we had to resolve which of them represent seismogenic effects.
Fortunately, a storm hit the region a week before the earthquake (5/2/2004) and left clear
imprints of raindrops on the ground and traces of floods along the N. Ze’elim gullies. We
therefore were able to single out the ground effects that occurred after the storm. Still
there may be a slight possibility that some of the effects occurred spontaneously a few

days before or a few hours after the earthquake.
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3.1 Failure effects and vulnerability of the young formations

Most of the failure events occurred within a range of 40 km from the epicenter and
mainly affected the exposed sediments of the Ze’elim Formation. Cracks and landslides
that were observed after the earthquake also occur in the region because of the erosional
processes already prevailing such as flooding, sea level changes and weather. These are
considered as secondary effects (Appendix 2, after Michetti et al., 2004) and occur where
conditions of equilibrium are unstable. Primary effects however, such as surface rupture
and liquefaction in natural ground that occur only during a strong earthquake, were not
observed.

The lithology and depositional history of the Ze’elim Formation are of critical
importance in determining its reaction to seismic forces. The rocks comprising this unit
are soft, unconsolidated, have a high water content, and formed during the Holocene.
Thus, geotechnically this unit is very weak.

Failure in the Lisan Formation caused by the present event was not observed.
However, previous moderate events that hit the region did induce ground failure in the
Lisan rocks (Arieh et al., 1977, 1980, 1982). However, it is important to note that the
Holocene deposits were not as widely exposed at that time as nowadays. Therefore, the
Lisan Formation should be considered as the second weakest unit in the region.

Worldwide experience shows an empirical relationship between ground failure and
distance from the earthquake epicenter. Keefer (1984) correlated the maximum distance
of earthquake induced landslides with respect to the magnitude of a given earthquake.
Projection of our observations, as well as data from other previous events in Israel, onto
Keefer’s findings shows that it is more sensitive (Fig. 12). Wust and Wachs (2000)
attributed the sensitivity in northern Israel to asymmetrical dispersion of seismic energy
and further enhancement of that energy due to channeling along the Dead Sea Rift
structure. The sensitivity of the Dead Sea region, however, is attributed to the weak
geotechnical nature of the Ze’elim and Lisan formations.

Projection of the 11/2/2004 liquefaction event on the empirical relationships between
magnitude and distance for liquefaction as given by Galli (2000) shows that it coincides
with the global experience (Fig. 13). Although it reflects the behavior of an artificial

ground surface rather than the natural ground conditions, it still emphasizes the
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vulnerability of man-made structures to seismic loading if not properly designed.

Arieh et al. (1977) already realized that “unconsolidated ground produces an
exaggerated response even to a small earthquake”. Our observations support their
conclusion and emphasize the vulnerability of the young deposits within the Dead Sea rift
to failure even during a moderate shaking. These are the Late Pleistocene Lisan
sediments that are marked ‘ql’ on the geological map of the region (Sneh et al., 1998) and
the Holocene Ze’elim Formation that is marked ‘q’ on that map and is also exposed in the

area between the old and the modern coastlines (Figs. 7, 14).

3.2 Earthquake intensities - the INQUA EEE scale

The newly proposed “INQUA EEE scale” (E3 scale) (Michetti et al., 2004) formalizes
“Earthquake Environmental Effects” in an intensity scale and thus enables us to evaluate
the strength of the earthquake in terms of its associated natural seismogenic effects
(Appendices 1, 2, 3). The E’ scale can also be correlated with the commonly used
macroseismic intensity scales (e.g., MCS, MSK, MM) that are based on subjective
reports of people and on damage to man-made structures (Michetti et al., 2004).

We attributed E* intensity degree to each of the observed effects according to the
newly proposed scale (Table 4) and constructed an E’ intensity map of the 11/2/2004
event (Fig. 14). The maximal degree is found to be VI and most of its occurrences are in
the Ze’elim sediments, as far as 40 km away from the epicenter. Effects observed within
the Lisan outcrops were limited only to change of water level in wells. Only one effect
was found outside the range of the young sediments — collapse at the base of a very steep
cliff of the Judea Group in N. Arugot (Photo 9). The low degrees (I-1II) of the E’ scale
are difficult to resolve because, by definition, “extremely rare occurrences of small
effects... or variations” (Appendix 1) are needed to contour these isoseismals.

Therefore, it seems that the spread of the environmental effects mainly follows the
areal distribution of the Ze’elim Formation rather than a uniform distance-dependent
distribution around the epicenter. Thus the E’ intensity map is actually delineates the
most vulnerable unit in the region.

Preliminary analysis of the macroseismic data according to the MSK scale (GII data)
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shows that the maximal degree is V-VI, in accordance with the maximal degree of the
INQUA scale. However the MSK high degrees appear not only near the Dead Sea but
also further away, as far as Bet Shemesh, 50 km westwards, where people reported fallen
objects and a few cracks in buildings, and in Nablus, 60 km NW of the epicenter (Al-
Dabbeek et al., 2004). It is interesting to note the high MSK degrees in the NW Galilee
that were mapped after the April 1979 Dead Sea earthquake (Arieh et al., 1980, Fig. 3),
accord with the long distance shaking reported in the 11/2/2004 earthquake. This may
point to an unusual amplification effect in this area or direction from the epicenter.
Overall, we expect good agreement between the maximal degrees of the E’ and the
MSK scales in regard with the 11/2/2004 event, but a considerable difference in its aerial

distribution.

3.3 Post earthquake investigations

Most of the failure effects of the 11/2/2004 event are typical of ongoing degradation
processes in the region and tend to fade away within days. If not documented
immediately, these effects become impossible to identify and differentiate. Therefore it is
important to detect and monitor these features (Appendix 3) immediately after the
earthquake. Here we were fortunate in that a rainstorm occurred one week before the
earthquake. It set off the ‘degradation clock’ and allowed us to distinguish between
failure effects that occurred before the rainstorm and the seismogenic effects that
occurred after. This may not necessarily be the case in the future; hence the fieldwork

should always be carried out as early on as possible.
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4  CONCLUSIONS

The 11/2/2004, M;=5.2 northeastern Dead Sea earthquake induced a wide spectrum
of natural effects and gave us an exceptional opportunity for systematic documentation.
Most of the natural seismogenic effects in Israel were found along the northwestern
coastal area of the Dead Sea shoreline, within a range of 40 km from the epicenter.

The failure effects include cracks originating from gravitational movements,
differential compaction and reopening of existing joints, landslides along the cliffs that
face the waterfront, collapses along gully banks that cut through the soft Holocene
deposits, and fall of sporadic rocks in steep unconsolidated slopes. All these phenomena
seem to occur regularly in this region and the earthquake accelerated these ongoing
degradation processes. Other failures were mud spill along open fractures and
liquefaction in an artificial trench.

Additional effects which were observed soon after the earthquake in the northern
Dead Sea were a tsunami up to a meter high and a rough sea, a rise in water level of up to
30 cm in some wells along the northwestern Dead Sea shoreline and a drop of a few
centimeters in a few others, a noticeable increase in flow from the Enot Zuqim springs, a
sudden drop of about a meter in the water level in a few sinkholes of the Shalem 2 site,
water injection around sporadic boulders, and a disruption in the daily pattern of the
radon concentration in two of the Enot Zuqim monitors 10-14 hours before the
earthquake. Dust, loud noise, wavy motion of the ground and shaking of palm trees were
also observed.

The failure effects most severely affected the soft Holocene deposits of the Ze’elim
Formation, mainly at the unstable waterfront cliffs and gully banks. This indicates that
geotechnically, the Ze’elim Formation is the weakest unit in the region and therefore is
extremely vulnerable to failure, even by a seismic load of a moderate earthquake. This is
in accordance with Arieh et al. (1982), who concluded after the 23/4/1979 earthquake
that “Therefore, an evaluation of seismic risk in Israel should always include a
consideration of local ground conditions”.

A maximal degree of VI is reached according to the newly proposed INQUA E’

intensity scale that is based on seismogenic ground effects. We expect this to correlate
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with the maximal degree of the macroseismic MSK scale of damage to man-made
structures, though the aerial spread of the effects of the two scales may differ
considerably.

The seismogenic effects tend to fade away within days after the earthquake and some
of them resemble morphologies of natural failures that already exist in the region.
Therefore, seismogenic ground effects should be immediately detected and monitored

before they can no longer be distinguished.
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Photo 1. Open cracks in the alluvial deposits of N. Og, near Qalya coast.
The cracks are oriented parallel to the abandoned and the modern
shorelines.

Photo 2. Arcuate cracks along a slump margins, Qalya coast.



Photo 3. Open cracks with vertical offset, probably due to differential
compaction, in the N. Darga gully near its outlet to the sea. The cracks
are oriented oblique to the shoreline.



Photo 4a. Re-opened cracks along the Qalya
coast. Pattern of cracks is oblique to the
shoreline. Photo was taken the day after the
earthquake.

Photo 4b. Re-opened cracks along the Darga
coast. Pattern of cracks in this locality is
parallel to the shoreline. Photo was taken the
day after the earthquake.



Photo 5a: Seismogenic crack superimposed on mud cracks, Darga coast.

Photo 5b. The pattern of the seismogenic crack below the mud crust is
not necessarily identical to the pattern of the mud crack, N. Darga.



Photo 6a. A slump at the modern sea cliff, Ze’elim Formation, near the
waterfront of the Qalya coast. Photo was taken the day after the earthquake.

Photo 6b. Slump of a bank, Ze’elim Formation, in the gully that drains the
Hamme En Gedi hot springs. Photo was taken five days after the earthquake
(Courtesy of E. Raz).



Photo 7. Collapse of a gully bank of N. Ze’elim, Ze’elim Formation.
Photo was taken the day after the earthquake. Note that the collapsed
material covers the trace of the flood that occurred a week before the
earthquake.

Photo 8. Collapse of the modern sea cliff, Ze’elim Formation, that faces the
waterfront of the Qalya coast. Photo was taken the day after the earthquake.



Photo 9. Collapse of fractured hard carbonate rocks of
the Judea Group and talus, N. Arugot. Photo was
taken in the afternoon, after the earthquake.

Photo 10. The artificial trench near the Qalya coast, where
liquefaction and water injection occurred. Note the mud,
water and cracks inside the trench. Photo was taken the day
after the earthquake.



Photo 11. Mud cones and open cracks inside the artificial trench, near the
Qalya coast. The cracks may reflect a very small scale lateral spreading.
Photo was taken the day after the earthquake.

Photo 12. Injected mud along an open crack, Darga coast. Photo was taken
in the afternoon, after the earthquake.



Photo 13. Wet sediment around a boulder; Darga coast. Photo was taken
in the afternoon, after the earthquake.

Photo 14. Waves and an unusual line in the Dead Sea, half an hour after the
earthquake. Photo was taken from the Qalya coast looking eastwards
(Courtesy of C. Barghoorn, Qalya).



Photo 15. Ponds along the Darga coast, a few meters inland. They seemed
to have formed after the earthquake, probably by the run-up wave of the
tsunami. Photo was taken in the afternoon, after the earthquake.

Photo 16. Tsunamite deposited by the run-up wave and a re-opened crack, Darga
coast. Note the seismite, upper right side of the photo, that was formed by an
historical earthquake. Photo was taken a day after the earthquake.



Photo 17a. Ponds in one of the Shalem 2 sinkholes, south of Mineral
Beach, Darga coast. Note the small ponds and mud along the margins of
the sinkhole. Photo was taken a day after the earthquake.

Photo 17b. Stream lines and open cracks in the mud at the bottom of one
of the Shalem 2 sinkholes, south of Mineral Beach, Darga coast. Photo
was taken the day after the earthquake.



Photo 18. Turbidity in the Dead Sea, along the coast between En Gedi
and the Darga coast. Photo was taken in the afternoon, after the
earthquake.
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Appendices

Appendix 1 The “INQUA EEE scale”
The new scale is presented here as proposed by Michetti et al. (2004).

Appendix 2 Categories used for the analysis of secondary ground effects

Classification of secondary ground effects used for the evaluation of EEE intensity degree.
Secondary effects are defined as such that occur under conditions of precarious equilibrium.
These effects need not necessarily be triggered by an earthquake but may also be induced by
other natural events or anthropogenic activities. Primary effects, on the other hand, occur under
conditions of relatively stable equilibrium and are caused only by an earthquake. See Michetti et

al. (2004) for a detailed description.

Appendix 3 INQUA EEE scale field survey form (Michetti et al., 2004)



Appendix 1

The INQUA scale’

As already mentioned, the assignment of each environmental effect to its proper intensity
interval in the following INCYUA scale has been based on a careful reading of the most widely
appled scales, 1e., the MM, MCS and MSE scales, integrated with more recent work indicated
in the references and Appendix 1.

In particalar, the diagnostics used in the INQUA scale have been compared and found
consistent with the macroseismic data available for a sample of histoncal and contemporary
Tealian carthquakes, as listed in Table 2. We have accurately reviewed the surface effects of 115
carthquakes occurred in Italy since the XII century, documented in available catalogs and
historical sources directly analyzed. The effects have been categorized according to the scheme
in Table 4. Each effect has been associated to the macroseismic intensity artributed in the
historical catalogs (Caputo and Faita, 1984; Posspischl, 1985a; 1985b; Boschi o af, 1995; Tint
and Mararmai, 199%; Boschi & af, 1997; Azzaro o af, 2001; CPTI, 1999, Boschi & af, 2000) on
the basis of local damage pattemns.

About the intensity threshold for the occurrence of landslides, we have also taken into
account the data of 40 carthquakes worldwide given in Keefer (1984), updated with ather 36
events word-wide by Rodriguez o ol (1999, and 22 earthquakes in New Zealand (Hancox #f af,
2002). For the onset of liquefaction we have also considered the data for Veneruela given in
Rodriguez of al (2002).

As for primary faulting, we have based our analysis on a first screening of the Wells and
Coppersmith (1994) and Yeats o gl (1997) dataser of carthquakes associated o surface faulting,
integrated with some recent Italian and Mediterrancan region events. The screening has been
based on the availability of epicentral intensity values and it is siill a work in progress. We have
plotted the maximum displacement and the susface rupeure length versus epicentral intensity,
obaaining the plots in Figure 4.

This database of macroseismic data is subject to expansion and revision in order o
incorporate more case histories; however, we are convinced that the sample of seismic events
studied is large enough for validating the proposed scale with a resolution consistent with the
scope of the present paper. For instance, we found several eruseal earthquakes associated with
rupture bengths of tens of kilometers for which an epicentral intensity of VIII or even of VII
(MM or MSK) has been reported. With the INQUA scale, an epicentral intensity of X or X1
would have been assigned, which is unequivocally a better description of the size of these
events, both in terms of magnitsde and of ground shaking level.

The degrees of the INQUA scale can be directly compared with the corresponding degrees
of most of the twelve-degree scales referred to above, in view of the fact that the differences
among these scales are not substantial in terms of the level of sccuracy they can provide
(Appendix 4). The INQUA scale is an innovative proposal — or perhaps is simply the
recognition that the work accomplished by earthquake scientists in the first decades of the XX
century is worth pursuing along the lines of its onginal inspiration. It reflects the present
viewpoint of its authors, which is necessarily subject o modificaion in ity detals,
notwithstanding their effort to integrate the largest dambase possible. Contributions and
eriticism from other researchers are expected and will be welcomed. They will in all probabiliry
provide the basis for a revised version, where new effects may be incorporated and grade
intervals of oceurrence and size of effects bemer constrained.

1 oeder mﬁumﬂﬂh&ﬂmﬁqmdﬂiﬂk_nm to name it “Indgsa EEE Seale™, where EEE would
stund for “Earthquaie Environmentl Effects™



Definitions of intensity degrees

I,II No perceptible environmental effects

a) Extremely rare occurrence of small effects detected only from instrumental observations,
typically in the far field of strong earthquakes,

Il  MNo perceptible environmental effects

a) Primary effects are absent,

b) Esxtremely rare occurrence of small variations in water level in wells and/or the flow-rate of
springs, typically in the far field of strong earthquakes.

IV No perceptible environmental effects
a) Primary effects arc absent.

b) A very few cases of fine cracking at locations where lithology (e.g., loose alluvial deposits,
saturated soils) and/or morphology (slopes or ridge crests) are most prone to this
phenomenon.

¢} Rare occurrence of small vanations in water level in wells and/or the flow-rate of springs.

d) Extremely rare occurrence of small variations of chemical-physical properties of water and
turbidity of water in lakes, springs and wells, especially within large karstic spring systems
most prone to this phenomenon.

¢) Exceptionally, rocks may fall and small landslides may be (rejacavated, along slopes where
cquilibrium is already very unstable, e.g. steep slopes and cuts, with loose or saturated soil.

fi Extremely rare occurrence of karst vault collapses, which may result in the formation of
sinkholes, where the water table is shallow within large karstc sprang systems.

g) Very rare temporary sea level changes in the far field of strong earthquakes.
h) Tree limbs may shake.

v Marginal effects on the environment

a) Primary effects are absent.

b) A few cases of fine cracking at locations where lithology (e.g., loose alluvial deposits,
saturated sodls) and/or morphology (slopes or rdge crests) are most prone to this
phenomenon.

¢) Extremely rare occurrence of significant vadations in water level in wells and/or the flow-
rate of springs.

d) Rare occurrence of small variations of chemical-physical properties of water and turbidity of
water in lakes, springs and wells,

e) Rare small rockfalls, rare rotational landslides and slump earth flows, along slopes where
equilibrium is unstable, e.g. steep slopes, with loose or samurated soil.



Vi

a)
b)

Vil

1)

b)

c)

Extremely rare cases of liquefaction (sand bodl), small in size and in areas most prone to this
phenomenon (hihgly susceptible, recent, alluvial and coastal deposits, shallow water able).

Extremely rare occurrence of karst vault eollapses, which may result in the formaton of
sinkholes, where the water table is shallow within large karstic spring systems.

Ocecurrence of landslides under sea (lake) level in coastal areas.

Rare temporary sea level changes in the far field of strong earthquakes.
Tree limbs may shake.

Modest effects on the environment

Primary effects are absent.

Ohccasionally thin, smillimetric, fractures are observed in doose affwrial deponits and or satwrated roils; along
steqpy slapes or riverbanks they cam be 1-2 oo wide. A few mimer cracks develp in paved (aiphalt | stowe)
rof,

Rare occurrence of significant variations in water level in wells and/or the flow-rate of
springs.

Rare occurrence of varations of chemical-physical properties of water and turbidity of
water in lakes, springs and wells.

Rockfalls and landslides up to ca. 103 m3 can occur, especially where equilibum s
unstable, e.g. steep slopes and cuts, with loose / samrated soil, or weathered / fractured
rocks. The area affected by them is usually less than 1 km'.

Rare carer of Bquefaction (rand boil), small in sige and in areas most prome @ this phenceenon (bibgly
sairceptilie, recent, alluvial and coartal deposits, shaliow water fabl).

Extremely rare occurrence of karst vault collapses, which may result in the formaton of
sinkholes,

Occurrence of landslides under sea level in coastal areas.
Occasionally significant waves are generated in sdll waters.

In wooded areas, trees shake; o very few snstable Embs may break and fall, aleo depending en specier and
state of bealth,

Appreciable effects on the environment

Primary effects observed very rarely. Limited surface faulting, with length of tens of meters
and centimetric offset, may occur associated with volcano-tectonic earthquakes.

Fracturer wp fo 5-10 cor wide are observed commuonly in loose allevial deposits and) or soturated roils;
rarely in dry sand, sand-clay, and dlay soil fractures wp fo 1 omr wide. Contimetric cracks common in paved
fashhalt or rtove) roads,

Rare occurrence of significant varatons in water level in wells and/or the flow e of
springs. Very rarely, small springs may temporarily run dry or be activared.

Quite common occurrence of vartations of chemical-physical properties of water and
turbidity of water in lakes, springs and wells,

Scantered landslides occur in prone areas; where equilibrium is unstable (steep slopes of
loose [ saturated soils; rock falls on steep gorges, coastal cliffs) their size is sometimes



significant (10° - 10° m); in dry sand, sand-clay, and clay soil, the volumes are usually up
to 100 m'. Ruptures, slides and falls may affect niverbanks and aruficial embankments and
excavations {c.g, road cuts, quarries) in loose sediment or weathered [/ fractured rock. The
affected area is usually less than 10 km?,

Rare cases of Equefaction, with sand boils wp fo 56 e in diameter; in areas nost proe fo this phencmene
fﬁ;@ :wn’% recent, allieial and coastal deposits, shalfow water tabile).

Possible collapse of karst vaults with the formation of sinkholes, even where the warter
table is deep.

Oceurrence of significant landslides under sea level in coastal areas.

Waves may develop in still and running waters.

In wooded arcas, trees shake; several unstable branches may break and fall, also depending
on species and state of health.

VIII Considerable effects on the environement

a

b)

b

¥/

£)

Primary effects observed rarely, Grosnd ruptures (surface fanlting) meay develop, wp fo several bumdred
meters long, with offeets gemerally smaller than 5 om, partioularsy for very shallow focws earthquakes, such
ar volgano-tectonic events. Tectonic subsidence or uplift of the ground swrface with maximum palues on the
arder of a few cenfimrelers may ooour.

Fractures up to 25 - 50 con wide are commonly observed in loose allurial deposits and) or saturated soils; in

rutre cases fraciures wp fo 1 oo can be observed in competent dry rocks. Decimetric oracks common i paved
fasphalt ar stowe) roads, as well as soall pressure wndulations,

Springs can change, pemerally tenporanily, their Tou-rate and/or elevation of outerop. Some soall springs
meay even ran dry. Variations in waler fevel are observed in wellr.

Water femperature often change in springs and/or wells. Water in lakes and rivers frequently becomes
meneclly, ar well as i o

Small to moderate (10° - 10° n¥) landslides widespread in prone areas; rarely they can
occur also on gentle slopes; where equilibrium is unstable (steep slopes of loose / saturated
soils; rock falls on steep gorges, coastal cliffs) their size s sometimes large (100 - 10° m7.
Landslides can occasionally dam narrow valleys causing temporary or even permanent
lakes. Ruptures, slides and falls affect riverbanks and artificial embankments and

excavations (e.g., road cuts, quarries) in loose sediment or weathered / fractured rock. The
affected area is usually less than 100 km?.

Liguefaction may be freguent in the epicentral area, depending on local conditions; rand botls wp o ca. 1 m
inr diameter; apparent water fountains in still waters; localived lateral spreading and settlenvents (subsidence
up bo ca. 30 cm), with firsuring paralfel to waterfront areas {river banks, lakes, cawals, seasbores),

Karst vaults may collapse, forming sinkholes.
Frequent occurrence of landslides under the sea level in coastal areas.
Significant waves develop in still and running waters.

Trees shake vigoronsly; some branches or rarely even tree-trunks in very wnstable equilibrises may break
and fall

In dry areas, dust clouds migy rise from the grownd in the epicentral area.



IX
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&)

c)

h)
i

]

k)

L

Matural effects leave significant and permanent traces in the environment

Primary effects observed commondy, Grownd rptures (surface fanlting) develsp, ap o & fow ko long, with
effiets generally smaller than 10 - 20 e, Teconic subsidence or uplift of the gronnd surface nith maximum
warlwes iir the order of a few decimeters may ocowr,

Fractures wpy fo 50 - 100 o wide are convmanly observed in loose alluyial deposits and/ o satwrated soils;
in comgpeient rocks ibey can reach up fo 10 cm. Signifcant cracks common in paved (aiphalt or stone)
roaacls, a5 weld ar sovadll pressure smdwlations.

Springs can change their flow-rate and/or devaton of outerop w a considerable extent.
Some small springs may even run dry. Variadons in water level are observed in wells.

Water temperature often change in springs and/or wells, Water in lakes and rivers
frequently become muddy.

Landeliding widespread in prone areas, alis on gentle sigpes; where equilibrivo is wnsiable {tieep slopes of
loase [ satwrated sotli; rock falls an steep gorges, woastal ckffs) their sige is froquently large {10V nrth
somreiimer very lorge (10° o). Landriides can dawe warrow valleys conning lemporary or even permament
dakees. Riverbamks, artificial embandkerents and excavations (eg, rood s, guarres) frequently collapre.
The affected area is soually fess thaw TOO0 dnr’,

Ligugfaction and mater upiurge ave frequent; sand boils wp fo 3 mr i diawreter; aiparent water fonmiaims
i stilf waters; frequent lateral spweading and settlements (tnbsidence of more than ca. 30 om), with frrning
perallel te waterfront arear (river banks, Lkes, canaly, searhores).

Karst vaults of relevant size collapse, forming sinkholes.

Frequent large landslides under the sea level in coastal arcas.

Large waves develop fn still and rumning waters. Small tiunamic may reack the coaital arear with tidal
wares wh o 50 - TO0 o bigh.

Trees shake vigorously; branches or even tree-trunks in unstable equilibrium frequently
break and fall.

In dry areas dust clouds may rise from the ground.

In the epicentral area, small stones may jump out of the ground, leaving typical imprints in
soft soil.

Environmental effects become dominant

Primary ruptures becomse leading. Ground rupisrer (inrface fonlting) can extend for several tens of lew,
with offtets reaching 50 - 100 e and more (up fo ca. 1-2 mr dw case of reverse fanlting and 34 m for
mormal fauwlting). Gravly grabens and elongated depressions develop; for very thallow focns earthguakes,
siich at voleano-tectonic events, rupture lengths meight be ik lower. Toctonic subsidence or uplift of the
grosnd sirface weth seaxdmm values i fve arder of feir svelers miay occnr,

Large landrlider and rock-falle (= 1P - 1P o) are frequent, practically regardless to equilibrine state
of the slopes, cansing temporary or permanent barrier laker. River banks, artificial enbanlments, and sides
of exvavations typically collapee. Levees and earth dams may even incur sevions damage. The affected area is
sisneilly spr fo SOO0 ke,

Many springs significantly change their flow-rate and/or elevation of outcrop. Some may
run dry or disappear, generally temporarily. Vadations in water level are observed in wells.



d)

)

b

Water temperature often change in springs and/or wells. Water in lakes and rivers
frequently become muddy.

waw.ud:m*:@ to more than 1 m wide are frequent, Mﬂﬁrfuﬁpﬁfmﬂh&dd@ﬂnﬁr:ﬂfﬂr
saturated il in competent rocks apening reach several decimeters, Wide cracks develap in paved (asphalt
or stome) roads, ar well as presinre endulations,

[ squefiaction, with water apsurge and soil compaciion, may change the aspect of wide qones; sand volianoes
even wrore than & s in diameter; vertical mbsidence even > Ty Larpe and fowg fisssres dwe fo lateral
Spreading are commmon,

Large karst vaults collapse, forming great sinkholes.

Frequent large landslides under the sea level in coastal areas.

ngp warer develop in shll and running waters, and crash wolently it the phorer. Rumning (rivers,
canals) and sl (lakes) waters may overflow from their beds, Tinmamis reach the coartal aneas, with tdal
wares up fo a fewr scters bigh,

Trees shake vigorously; branches or even tree-trunks very frequendy break and fall, if
already in unstable equilibrium.

In dry areas, dust clouds may rise from the ground.

Stowes, even if well anchared in the soil, may funp owt of the grownd, leaving fypical imprints fn soft soil
Environmental effects become essential for intensity assessment

Primvary surface fauliing can exciend for several tens of ko up to more than 100 ke, accompanied by offsets
reacling several meters. Gravity graben, elongated depresstons and prescare ridges develop. Drainage Smes
can be seriously offset. Tectonic snbsidence or uplift of the grosnd surface with maxcimum vales fir the order
& MumEONT MELERT WY DT

Larpe landslides and rock-falls (= 10° - 10F m) ave frequent, praciically regardiess to equilibrinm stafe
of the slapes, cansing many femporary or permanent barrier akes, River bamks, artificial enbanbments,
and sides of excavations typically collapre. Levees and earth dams incwr serions damage. Sigrificant
Landslides can accur at 200 — 300 ke distance from the epicenter. Prisvary and secondary environsental
effects ean be observed over ferritory ar karge as 10000 kv,

Many springs significantly change their flow-rate and/or elevation of outcrop. Frequenty,
they may run dry or disappear altogether, Vartatons in water level are observed in wells.

Water temperature often change in springs and/or wells. Water in lakes and rvers
frequently becomes muddy.

Opert grovwnd cracks up 1o several meters wide are very frequent, mainly in loose allvial deposits and) or
saturated soils. In competent rocks they can reach T o, Very wide eracks develop in paved (agphaly or
stone) roads, as well as karge precowre sndslations.

Liguefaction changer the agpect of exctensive qowes of bwlond, determining vertical subiidence posibly
exreding teveral meters, numerons Lirge sand polcanoes, and severe lateral spreading featurer.

Very large karst vaults collapse, forming sinkhales,

Frequent large landslides under the sea level in coastal areas.

Larpe waves develap in still and rimning wafen, and orash wiolently info the shores. Baming (rivers, canali)
and still (lakees) waters may overflow from their beds. Trunans reach the coartal arear with tdal waves wp
do mary meelers high



¥/
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b)
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Trees shake vigoronsly; many tree branches break and several whole trees are sprooted and fail,
In dry areas dust clouds may arise from the ground.

Stones and small bowlders, even if well anchored in the soil, may jump out of the grownd leaving typical
imeprints in soff rorl

Environmental effects are now the only tool enabling intensity to be assessed

Primary surface fanlting can exctend for several bundreds of ke up to 1000 Jean, accompanied by offrets
reaching several tens of meters. Gravity graben, elongated depressions and pressure ridges develop, Drainage
lines can be serionsly offset. Landscape and geomorpbological changes induced by primary effects can attain
exctraordinary exitent and size (typical examples are the splift or subsidence of coastlimes by several meters,
appearance or disappearance from sight of sigmificant landreape edements, nivers changing course, origination
of waterfalls, formation or dirgppearance of lakes).

Large landslides and rock-falls (> 10° - 10° w#) are frequent, practically regardless to equilibrinm state
of the sigpes, cansing many tengporary or pernanent barrier lakes. Fiver banks, artificial ensbankments,
and sides of excavations typically collapse. Levees and earth dams incur seviows damage. Significant
dawdsiides can ocowr af more than 2000 — 300 kar distance from the epicenter. Primary and secondeary
emvironmental effects can be observed over territory larger than SO000 ko,

Many springs significantly change their flow-rate and/or elevation of outcrop. Frequently,
they may run dry or disappear altogether. Variations in water level are observed in wells.

Water temperature often changes in springs and/or wells, Water in lakes and rivers
frequently becomes muddy.

Cerosnd apen cracks are very frequent, up fo one meter or more wide in the bedrock, wp fo mare than 10 mr
wide in loose allurial deposits and/ or saturated soils. These may exitend up to several kilometers in length,

Liguefaction ocewrs over large areas and changes the morpbology of extensive flat qones, desermining vertical
subsidence exceeding several meters, widespread large sand volcanoes, and extensive severe lateral spreading

Jeainres,
Very large karst vaults collapse, forming sinkholes.

Frequent very large landslides under the sea level in coastal areas,

Large waves develap in ctill and rumning water, and erash violently into the shores. Running (rivers, canals)
and still (lakes) waters overflow from their beds; watercosrses change the direction of flow. Tsunamis reach
the coastal areas with tidal waver up 1o tens of meters bigh.

Trees shake vigorously; many tree branches break and many whole trees are uprooted and
fall.

In dry areas dust clouds may arise from the ground.
Even farge bosdders may funp ont of the groswnd leaving typical imprrints in soft sodl



Appendix 2

Table 4: Categories used for the analysis of secondary carthquake ground effects

Class of effect

suehiet

Hydrological anomalies

Liquefaction and vertical
maovements

Landslides

(based on Table I1 in Keefer, 1984)

Ground cracks

" EEEEEERE

Hydrological dascharge rane fwater level change
Hydrological-chemical-physical changes and rurhidisy

New springs

River overflows and lake seiches

Temporary sca level changes - tnsnamis

Liquefaction and lateral spreading

Soil and backfilling compaction

Tectonic subsidence/aplift

Landslides in rock: rackfalls, rock slides, rack avalanches, mck
sburmips, rock block slides

Landslides i soal: soil t'l].L-,',:-ui]ﬂidu,;m] :.'l'.lll.n;.hq_i.,w-cil
|.'1.|.|'|:|r.\|:.II ol hlock :].i.d::, alowar :ullhﬂmr:,s-ni] lateral :-I:lnl'en.n:lsr
rapid soil flows, subagqueous kndslides

kxret vaals collapses and sinkholes

Paved romls

Seiff ground

Loose sediments — et soal




Appendix 3

Notes on the application of the Inqua EEE scale

This document is a first draft proposal of a form aimed at summarizing in the field the main
elements characterizing cach environmental effect of an carthquake, so that a local intensity can
be assigned to the site.

Instructions on how to use this form are not provided here, being most of the keys self-
explaining (hopefully). The form is conceived in such a way o be filled in the field with a
minimum effort even by a not trained specialist, although a specific expemence is highly
advisable.

Ar this stage, all the information has been packed in a single double-faced sheet. However, more
information (sketches, notes, photographs) can be provided in additional sheets, Anyway, a
longer form may be adopted in the future, if needed. Another goal of the working group is the
realization of a sort of database of environmental effects of earthquakes, so changes to this deaft
form might result necessary to make it more suitable to this end.

Critical evaluation by earthquake geologists, cspecially by their field testing during surveys afrer
an earthquake, is clearly necessary 1o bring this draft form to a factual efficiency. To this end it is
proposed here. Feedback is therefore not only expected, but it will be greatly weleome.
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Effects Scale Sheet 1: Generalities
Earthquake
Region Time Magnitude MI Ms Mb Mw
Intensity MM EMS MSK JMA Latitude Longitude datum

Observation point
Nr. Date/hour Surveyor Locality

Lat Lon Km from epicentre Local Intensity MM EMS Site PGA Photos yes no

Geomorphological setting - mountain slope — mountain valley — hillslope — alluvial fan — bajada — delta - alluvial plain — marsh -
seaf/river cliff — river/lake bank — sea/lake shore - arid-semiarid flat — desert - other:

Brief description

Main effects of seism on artefacts damage/collapse of single/multiple buildings bridge viaduct tunnel railway highway

paved/unimproved road

Environmental effect Geologic origin: tectonic / ground shaking newly formed / reactivated
Surface faulting — open fissures in bedrock - mole track - ground crack - slope movement - sinkhole - ground
settling/liquefaction/lateral spread - hydrologic anomaly - gas emission - moved/overturned stone

Other

Non geologic noise light-emission fire vegetation: burnt grass, swinging trees, broken branches, fallen fruits...

Brief description

Major affected lithology rock densely cleaved massive stratified intrusive metamorphic volcanic lava/pyroclastic sedimentary
shale/sandstone/conglomerate/limestone/salt hard/semi-pseudo-coherent — loose sediment soil/clay/silt/sand/gravel colluvium
backfill — Sedimentary environment marine shore fan deltaic alluvial lacustrine marsh slope arid/temperate/humid

Notes

Frequency of observed feature in the area
2

single/multiple  number over km Already/never triggered by earthquakes
Maximum dimension length m width m area _m2 volume _m3

Average dimension length _ m width m area m? volume —m3

Notes

Sketch




Quy s
G INQUA T Sheet 2: Details

Earthquake Region Time

Observation point

Nr. Date/hour Surveyor Locality

Surface faulting strike dip

normal/reverse/oblique/strike-slip dextral/sinistral - total length km - nr of segments ___ - aligned/en-echelon right/left stepping
maximum vertical offset cm horizontal offset cm - average vertical offset cm horizontal offset cm

displaced feature for direct measurement

single/multiple scarp — other features push-up/pull-apart/gravity graben

Notes

Ground cracks

Type fracture - mole track strike dip Displacement cm sense of displacement

Maximum length m - number of features over a distance of m — maximum opening cm

Shape straight/sinuous/curvilinear - Possible origin surface faulting/slide/ground settling/detachment
Notes

Slope movement
Type rock fall — deep-seated slide (sackung) - rotational slide — slump - earth flow - soil slip — other

Maximum dimension of blocks m?® over a distance of m — Total volume m?® - Humidity very/moderately/no wet
Age very old/recent/new Activity partial/total already active/quiescent
Velocity extremely/very/moderately rapid/slow Time delay for manifestation of motion hours

Notes

Ground settlement - collapse
Type liquefaction — compaction — lateral spread - subsidence — bulge — sinkhole — other

Maximum diameter __ m - number of features __ over a distance of ___ m — maximum lowering/uplift ___ cm
Shape round/elliptical/elongated/squared positive/negative cone - Humidity very/moderately/no wet
Depth of water table _ m — water/sand ejection —

Velocity extremely/very/moderately rapid/slow Time delay/advance for manifestation of feature __ hours

Notes

Hydrologic anomaly
Effects overflow/drying up/appearance of springs/waves/water fountain/variation of water table/discharge

rate/temperature/chemistry/turbidity where spring/river /lake/well/fountain/aqueduct other

Temperature change __ C° — Discharge change I's
Changed chemical component/s - Permanent/temporary change lasted for ___hours
Tsunami: maximum wave height m length m Extent of affected coast km

Velocity extremely/very/moderately rapid/slow - Time delay/advance for manifestation of feature ____hours

Notes

Intensity attribution IV.V VI VIl Vil IX X XI Xl

Based principally on existing INQUA tables/other Intensity scale/new assessment and
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