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General analytical solutions of the linearized Richards
equation for a half-space and a finite-thickness domain

Soluzioni analitiche generali dell’equazione di Richards linearizzata
per un semispazio e un dominio di spessore finito

ABSTRACT — This paper aims to desctibe a compilation of so-
lutions of the linearized one-dimensional Richards equation,
solved both in a half-space and in a finite-thickness domain.
The solution (the soil water content at any time and depth)
can be represented as the sum of two components, one re-
lated to the initial condition and to null boundary conditions
and the other related to the boundary conditions and to a
null initial condition. The sum of the two quoted compo-
nents is the general solution of the Richards equation in in-
tegral form; the analytical expression of the soil water
content distribution is therefore obtained if the integrals in
the solution can be solved. Besides the integral form solu-
tion, another solution holding for any initial and boundary
conditions represented with step functions is described in the
paper. The initial condition is always the soil water content
profile (e.g. the one experimentally measured) while the
boundary conditions are different for the two domains. For
the half-space domain, the boundary condition can be the
soil water content at the surface or the surface flux (e.g. the
measured precipitation or evaporation). For this domain, the
solution, with the initial-boundary conditions expressed as
step functions, is obtained using a procedure, which accounts
for the effects of the hydrological conditions of the soil on
the flux at the surface. Therefore, this procedure is able to
switch between successive atmosphere-controlled and soil-
controlled phases of infiltration or evaporation, as required
by the given boundary condition. The procedure provides
the ponding time, the desiccation time and the surface water
flux during the soil-controlled phases. For the finite-thick-
ness domain, the top and bottom boundary conditions are
given as time dependent soil water content trends. Also for
the finite-thickness domain, a solution, obtained approxi-
mating the initial-boundary conditions with step functions,
is derived using the basic solution. It provides the soil water
content profile evolution, the top and bottom instantaneous
and cumulative fluxes and the water gained by the soil layer
in a specified time interval. Lastly, a comparison between the
procedure results and an exact analytical solution is discussed.
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RIASSUNTO — Questo lavoro ¢ un sommario di soluzioni del-
I’equazione unidimensionale linearizzata di Richards per un
semispazio ed un dominio di spessore finito. La soluzione
cercata ¢ il contenuto volumetrico d’acqua del suolo. Essa ¢
la somma di due componenti: la soluzione ottenuta con con-
dizione iniziale assegnata e con condizione al contorno nulla
e la soluzione ottenuta con condizione iniziale nulla e condi-
zione al bordo assegnata. La forma integrale della soluzione
cosi ottenuta fornisce 'espressione analitica del contenuto
volumetrico d’acqua se gli integrali che contiene sono risol-
vibili. II lavoro, oltre a presentare la soluzione generale in
forma integrale, fornisce le soluzioni per qualsiasi condizione
iniziale e al contorno, approssimate con funzioni a gradini.
La condizione iniziale ¢, per entrambi i domini, il profilo ver-
ticale di contenuto volumetrico d’acqua del suolo. La condi-
zione al contorno, per il semispazio, puo essere sia il flusso sia
il contenuto volumetrico d’acqua alla superficie; per lo strato
di spessore finito, le condizioni su entrambi i bordi sono sem-
pre il contenuto volumetrico d’acqua. II profilo verticale del
contenuto volumetrico d’acqua, misurato in una stazione
idrometeorologica, ¢ gia una funzione a gradini perfettamente
utilizzabile come condizione iniziale, analogamente il flusso
d’acqua misurato all'interfaccia aria-suolo (precipitazione o
evaporazione) ¢, a sua volta, una funzione a gradini imme-
diatamente utilizzabile come condizione al bordo per la so-
luzione del problema. Per questo dominio (semispazio) ¢
stata messa a punto una procedura che tiene conto degli ef-
fetti delle condizioni idrologiche del suolo sul flusso alla su-
petficie. La procedura ¢ in grado di gestire automaticamente
il passaggio da una fase di evaporazione o infiltrazione con-
trollata dall’atmosfera ad una controllata dal suolo e viceversa,
come richiesto dalla condizione al contorno assegnata. La
procedura fornisce anche il tempo al quale il suolo non ¢ piu
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in grado di assorbire o cedere I’acqua fornita o richiesta dal-
Patmosfera; inoltre calcola i valori istantanei e cumulativi del
flusso alla superficie, del ruscellamento, dell’acqua guadagnata
da una colonna di suolo e del flusso uscente dal fondo di tale
colonna. Viene inoltre mostrato e discusso un confronto tra
i risultati di questa procedura e una soluzione analitica. In-
fine, anche per lo strato di spessore finito, ¢ presentata una
soluzione ottenuta approssimando le condizioni iniziale ¢ ai
bordi con funzioni a gradini e vengono calcolati i valori istan-
tanei e cumulativi del flusso al bordo superiore e inferiore e
dell’acqua guadagnata dalla colonna di suolo.

PAROLE CHIAVE: acquifero superficiale, mezzo omogeneo,
mezzo poroso, modello matematico, modello monodimen-
sionale, modello teorico, umidita del suolo, zona non satura.

1. — INTRODUCTION

The space and time evolution of the soil water
content in an unsaturated medium is described by
the Richards equation (RICHARDS, 1931). This
equation is highly non linear because of the
dependence of both the hydraulic conductivity and
the soil water potential on the soil water content.
Therefore, several numerical routines have been
developed to solve the Richards equation with
numerical schemes. However, it is well recognized
that analytical solutions of differential equations
describing physical problems provide general
insights and concisely identify the relationships
among the variables of the studied problems,
allowing rational approximations and simplifications.
Therefore, although numerical methods are
powerful in solving complex non-linear problems,
analytical solutions maintain their utility and can
also provide a useful check to numerical procedures.
Some particular cases, exact and approximated
analytical solutions of the Richards equation have
been derived by, e.g., SANDERS ef akii (1988),
HOGARTH e alii (1989) , HOGARTH ef alii (1992),
PARLANGE et alii (1992), ROSS & PARLANGE (1994),
PARLANGE et alii (1997), HOGARTH & PARLANGE
(2000). Moreover, analytical solutions of the
linearized Richards equation have been derived in
integral form by WARRICK (1975) and BASHA
(1999) resulting in closed form solutions only for
constant flux boundary conditions. CHEN e# alii
(2001) derived analytical solutions of the linearized
Richards equation for a variety of time dependent
fluxes, before surface saturation, while CHEN e# a/ii
(2003) presented a linearized solution technique for
a variety of surface fluxes after ponding. To obtain
limiting cases of the real soil solutions, WANG &
DoO0GE (1994) proposed some analytical solutions
of the Richards equation using a uniform initial
condition and a quantized flux boundary condition.
Two different approaches were used by MENZIANI
et alii (2005) to obtain exact solutions of the

Richards equation: one is used to solve the non-
linear equation without the gravity term, the other
allows to derive solutions to the linearized equation.
A hybrid procedure, making use of initial-
boundary conditions approximated by step
functions, has been carried out by MENZIANI e7 a/ii
(2007).

In the present work, a compilation of solutions
of the linearized one-dimensional Richards equa-
tion is presented. This work is based on two spatial
schemes: a half-space and a finite-thickness domain.
The computed soil water content at any time and
depth is always the sum of two components. One
component is related to the initial condition and
one or two null boundary conditions; the other is
related to the boundary conditions and to a null
initial condition. The sum of the two components
gives the general solution of the Richards equation
in integral form. This integral form is not always
solvable; here some exact solutions are given.

Finally, another solution, holding for any initial
and boundary conditions represented with step
functions, is described in the paper.

2. - MATHEMATICAL FORMULATION

In this paragraph, the mathematical formulation
to solve the onedimentional linearized flow equa-
tion to study infiltration and evaporation processes
in a homogeneous medium is presented. A half-
space and a finite-thickness domain are the two
schemes used to model a nondeformable soil. For
both schemes, the linearized Richards equation is
changed in a new equation containing only dimen-
sionless variables, suitable for general application.
For the finite-thickness domain scheme only this
first part will be developed while more detailed re-
sults will be given for the half-space domain.

Assuming 7 as the time, z as the soil depth
(positive downward) D as the constant hydraulic
diffusivity and ¥ =0k/88 as the first derivative of
the hydraulic conductivity (k(9)), the following
equation

2

% _p. 5’_}2’ _p.oY (1)

ot oz 0z
can be used to describe the space and time
evolution of the volumettic soil water content,

9z (0<9<1)

or to describe the evolution of the corresponding
flux, defined as:

o(z,n=v-9-p-22

0z

2
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In order to use the linear differential equation (1),
the relationship between the hydraulic conductiv-
ity and the water content is assumed to be linear.
The problem to determine 9(z,¢) is an initial con-
dition problem (except for periodic boundary con-
ditions) therefore an initial condition is required:

9(z,0)=9(2) (t=0) (32)
or:

D(2,0)=D,(z) (t=0) (3b)
The space domain is z 2 0 for a half-space or 0<z< H
for a finite-thickness domain of depth H.

For the half-space only one boundary condition is
given:

3(0,1)=9,(1) (t>0) (42)
or:

®(0,¢)= D, (1) (t>0) (4b)

while for the finite-thickness domain two boundary
conditions are required:

8(0,1)=8,(1) (t>0)

I(H,1)=8,(1) (t>0) (52)
or:  @(0,1)=d,(1) (t>0)

O(H,1)=0,,(1) (t>0) (5b)

From the hydraulic parameters of the medium, a
characteristic length 8 = D/V can be defined, which
allows to introduce the dimensionless variables:

C=z/6 n=D-1/8

Using these two dimensionless variables, equation
(1) results:

or_ov _ov

on 85 of
When treating with the finite-thickness domain, H
(the depth of the layer) represents a reference (or
scale) length and, in this case, it is convenient to
define the dimensionless space and time variables
as follows:

{=z/H

(=20, 7>0) ©6)

n=D-t/H?

and equation (1) becomes:

o _3Y _, 3 (0x¢<lLp20) A=(-H)/D (7)
on ot " oc

2.1. — HALF-SPACE DOMAIN: PERIODIC BOUNDARY
CONDITION

In some hydrological problems, a periodic
boundary condition (PBC) is particularly useful to
describe the soil volumetric water content or the
flux at the surface. The solution, in this case, is
easily obtained because this is no more an initial
condition problem.

Considering a PBC, with amplitude $* and an-
gular frequency , for the soil volumetric water
content:

3,()=9* o

and assuming that the method of separation of
variables is appropriate, the searched solution can
be written as:

Hz,1)= " g(2)

Now, considering the half-space scheme, the so-
lution of equation (0) is:

_1+_\"'g!:£‘_} ¢

ot LA

sY w ¢
2 [""_’] -q+\.-'2-‘,.|:,"'1m‘-3

HE p)=9%e
Where: 4’ =8-0-D/V? and &} = D/ which is the
characteristic depth of the problem for the con-
sidered period; 8, ¢, n are defined above.

Of course,w =0 corresponds to the stationary state
and &(<.n) = 9*.

A solution ®(¢,7), similar to §(£,7), can be
obtained considering a PBC for the flux at the sur-
face. In this case, to get the soil volumetric water
content, the integration of the water flux have to
be performed (see the following equation (11)).

2.2. — HALF-SPACE DOMAIN: GENERAL SOLUTION

Here it will be examined the case of a homoge-
neous half-space. To solve equation (6) an initial
condition and one time dependent boundary con-
dition have to be assigned.

Considering for the soil water content any con-
tinuous function of the vertical depth as initial
condition and any continuous function of the time
as boundary condition, the general solution of
equation (0), due to its linearity, can be obtained as
the sum of two solutions:

& M=)+ (<) ®)

Where &{<,n) represents the solution of equa-
tion (6) with the initial condition (3a) and a null
boundary condition and &(&,n) represents the so-
lution of equation (6) with a null initial condition
and the boundary condition (4a). That is:
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e.27
4

s Tayes| L8 _A5T |
.{C,ﬂ)—j—;—ﬁ-!&@)-e gl e ¢’ (92)

and, by means of the Duhamel theorem (CARSLAW
& JAEGER, 19806), one obtains:
2 o [%J_ﬂ 4-¢-dn
H¢m=7=[%0)-e ———= (D)
T 2[a-(r-n)?

The sum of equations (9a) and (9b) is the inte-
gral form of the solution of equation (6) but the
integrals in the aforementioned equations can be
difficult or even impossible to be solved analyti-
cally.

Similarly, if the flux is the unknown function in
equation (6), the general solution can be obtained
as the sum of two solutions:

DL 7) =D, +D,(L.7) (10)

Where @,(£,n7) represents the solution of the
flux-based form of equation (6) with the initial
condition (3b) and a null boundary condition and
®,(£,n) represents the solution of the flux-based
form of equation (6) with a null initial condition
and the boundary condition (4b). Their expressions
are equal to (9a) and (9b) with @ instead of ¢ .

Once the solution ®(¢,5) has been computed,
the soil volumetric water content ¥(¢,7) is ob-
tained from equation (2):

& Tt : :
Gm= et o mdg (1)

g

remembering that: ljme_c -9(¢&.m)=0

2.3. — FINITE-THICKNESS DOMAIN: GENERAL SOLU-
TION

Let us consider now the case of a homoge-
neous H-thick finite-thickness domain. To solve
equation (7) an initial condition and two time de-
pendent boundary conditions have to be assigned.
As for the previous domain, the general solution
of equation (7) is given by the sum of two solu-
tions as described by equation (8). Again, the solu-
tion 4(¢,n)is derived for null boundary conditions
and an arbitrary initial condition (3a) and &(<,n) is
derived for a null initial condition and two (usually
different) arbitrary boundary conditions (5a). That
18 M e

S m=e? -3 B, e sin(n-7-¢)
el ; (12a)
; A
with A, =(n2 ¥ AR T}

where:

-

B,=2-[8(¢) e ? sin(n-7-¢)-ds

Also in this case, for a null initial condition and
two continuous time functions as boundary con-
ditions, the general analytical solution of equation
(7) is obtained using the Duhamel theorem.

Y T e ]
(12b)

The sum of equations (12a) and (12b) is the so-
lution of equation (7) in integral form. The ana-
Iytical expression of the soil water content
distribution 9(¢, ) is obtained if the integrals in the
above equations can be solved.

3. — HALF-SPACE DOMAIN: PROCEDURE

In this section, a procedure to compute the half-
space solution, obtained approximating the initial-
boundary conditions with step functions, is
described. First of all, let us present the solution
obtained assuming a null initial condition and a
constant boundary condition.

3.1. — HALF-SPACE DOMAIN: NULL IC AND CON-
STANT BC

Let us assume the following initial-boundary
conditions: 9()=0 (n=0)
S(m =4 =0

Due to the choice of the null initial condition

the component (9a) of the solution is null, there-

fore the problem reduces to the determination of

(Ob)
9@,73):%.{”{;’_:&]”4.e,;fc[jf/%ﬂ (13)

Using the same initial-boundary conditions for
the water flux a similar solution is found with @
instead of &.

3.2. — PROCEDURE

This procedure computes the solution of the
linearized Richards equation, approximating the
initial-boundary conditions with step functions.

The initial condition is the soil volumetric water
content, while the boundary condition is the sur-
face flux. In fact, the soil volumetric water content
profile and the precipitation or evaporation are
usually measured at hydro-meteorological stations.

As explained, the solution is the sum of 4(¢,7),
that is the component obtained assuming a null
boundary condition and an arbitrary initial condi-
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tion, and 9,(¢,n), that is the component obtained
assuming a null initial condition and an arbitrary
boundary condition. The procedure changes the
boundary condition from the water flux to the soil
water content and vice versa, according to the at-
mosphere-controlled or soil-controlled phase re-
spectively.

3.2.1. — null BC and arbitrary IC

Let us assume an arbitrary initial condition ap-
proximated by: 5
9&)=9+ 2%~ 9,.)- H -¢,)

n=l
N is the total number of discontinuities (at: &, &5,
.., &) where the initial condition assumes the val-
ues: 4, &, ..., 9, (besides @, which is the soil
water content value between ¢ =0 and £ =¢)).
H(&-¢,) is the Heaviside function (JONES, 1966).
The last soil water content value 9, is constant
between ¢ =¢, and infinity. With a null flux as
boundary condition and taking into account the
principle of superposition, the solution is given by
the sum of N+1 terms.

+e [er{’“‘: ) JE;erﬁ{
S0 1){,_,,[ tas ] e»,{w[mc +c] zﬁm{n c+¢m

(14)

g(&.m= —{eff

3.2.2. — null IC and arbitrary BC
3221.—atmosphere—controlled phase

During the pre-ponding phase or pre-desicca-
tion-phase the rate of the flux at the surface is at-
mosphere-controlled. Supposing to be in this
phase, let us assume an arbitrary flux boundary
condition approximated with a step function:

(1) =g, +i(q,,. ~4,)-H(n-1,)

m=1

M is the total number of discontinuities (at:#,,7,,

.,Ths) where the boundary condition assumes the
values: ¢,, ¢,,...,q,, (besides ¢, , which is the sur-
face flux value between 7 =0 and  =#,). Assuming
a uniform initial condition g(¢)=0and taking into
account the principle of superposition, the solu-
tion of the problem will be a linear combination
of(J,, +1) terms, with J,<M.J, is the number of the
discontinuities before 77; e.g. if 7, <n <nythenJ, =2.

3;(4"’?)=%{Hﬂf[;;%]w;v[z-ﬁ-fed' _f'] erfc[ﬂwm zl{q. —g.).

corf| 1= a1 =€ cierf) B Mma 6 | el B lma S
{ITH[}J’?-%] [2 e - ml] M- rr,l]ﬂ
(15)

The solution of the linearized Richards equa-
tion is given by the sum of equation (14) and (15)
during the atmosphere-controlled phase.

3222.—soil-controlled phase

If the precipitation rate exceeds the soil hy-
draulic conductivity at saturation, the downward
infiltration rate into an initially unsaturated soil cor-
responds to the rainfall rate until the ponding is
reached. Thereafter, the rate of infiltration will de-
pend on the soil hydraulic characteristics and the
phase is called “soil-controlled phase”. Similarly, during
drying periods, the evaporation mechanism
switches from atmosphere to soil controlled phase
when the soil is no longer able to supply water at
the rate required by the atmosphere. At the begin-
ning of the soil-controlled phase a new initial con-
dition is required. It is the discrete soil moisture
vertical profile computed during the atmosphere-
controlled phase at the ponding time 7, (satura-
tion) or at the desiccation time 7, (air-dry soil, when
the rate of the water loss at the surface exceeds the
rate of supply from below). The boundary condi-
tion is thereafter a soil water content constant value
equal to one in case of ponding and equal to zero
in case of air-dry soil.

3223.—desiccation

If the air-dry soil is reached, a null soil volu-
metric water content at the surface is the new
boundary condition and the new initial condition is

the vertical profile of the atmosphere-controlled
phase atp =7, .

_"-9_ n-ny+¢,~¢ =1+ —¢ |_
9(&*?%—2“2{{2#%] fr[ o ]
’? n+&,+¢ .y N=0,+C,+6
[”’f‘ Py ]'f{ 201, m 16)

3224.—ponding

If the ponding is reached, unitary soil volumet-
ric water content at the surface is the new bound-
ary condition and the new initial condition is the
vertical profile of the atmosphere-controlled phase
at n=n,.

P

s 35 ol

(17)

As usual the solution (17) is the sum of two
parts, the first is the solution (16) obtained with the
aforementioned new initial condition and a null soil
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water content boundary condition. In this case, 77,
instead of 7, has to be used in equation (16). The
second part is the solution for a null initial condi-
tion and a unitary soil water content boundary con-
dition.

4. — ILLUSTRATIVE EXAMPLES

In the previous section, the general solution of
the linearized Richards equation has been obtained
in integral form; here particular analytical solutions
pertaining to some simple cases of initial-boundary
conditions are deduced from the general analytical
model.

In this section it is also shown an example of
the procedure, which uses the step functions as ini-
tial-boundary conditions. It will show the ability of
this procedure to take into account the atmo-
sphere-controlled and soil-controlled phases of in-
filtration or evaporation, as required by the given
boundary condition. A comparison between the re-
sult of this procedure and an exact analytical solu-
tion is then discussed.

A very simple example for the finite-thickness
domain is finally presented. The analytical solu-
tion used in this example, which assumes constant
initial and boundary conditions, represents the
basic element to build a procedure similar to the
one described for the half-space domain. The so-
lution with the initial-boundary conditions ap-
proximated with step functions is a sum of
solutions similar to the one here used. Since the
boundary conditions for the finite-thickness do-
main are the soil water content trends, a switch be-
tween atmosphere-controlled and soil-controlled
phases is not required.

4.1. — HALF-SPACE DOMAIN: NULL IC AND
EXPONENTIAL BC

Let us assume the following initial-boundary
conditions.

8()=0 (7=0)
) =9 -e"" € =0

The choice of the null initial condition implies
that the component (9a) of the solution is null and
the problem reduces to the determination of (9b).

According to the boundary condition parameter
7, the solution has three different expressions. This
is due to the presence of a square root with a ra-
dicand, which is null for y=1/4, positive for y<1/4
and negative fory >1/4. Therefore:

- for y<1/4

s [ o -'.'-""
3({-’})=—§’~e[ > f[e & "’ﬂ'[—g—’r\j’; 'I’"Jf’]+e erf J_ —= ]:|

It is easy to verify that, if y=0, equation (18a)
reduces to equation (13).

- for y=1/4

2-.,_’—:;
S =5 ]‘”’f"[z-iﬁ) 1)

-for y>1/4

I&.m=4 6’[;:] -W{W[H-JEH#]} (18¢)

where W(x +iy)=W(z)=e -erfe(~i-z) is a complex
function (of complex variable) whose real and
imaginary parts are reported in table 7.9, p. 326
(ABRAMOWITZ & STEGUN, 1965) and in the Ap-
pendix II, table II, p. 486 (CARSLAW & JAEGER,
1986). Equation (18c) reduces to equation (18b) if
y=1/4, the same for equation (18a).

4.2. — HALF-SPACE DOMAIN: UNIFORM IC AND CON-
STANT POSITIVE AND NEGATIVE FLUX BC

In order to understand how works the above
described procedure, a first application is pre-
sented. Uniform soil water content is assumed as
initial condition; the flux boundary condition is a
step function: starting at 7 =0 with a positive value;
at 7=10-7, the flux becomes negative with the same
absolute value. Here, considering a typical soil, 7, is
the dimensionless time corresponding to half an
hour. The assumed flux is the boundary condition
only during the atmosphere-controlled phases.
During the soil-controlled phases, the boundary
condition becomes the soil water content at satu-
ration ($=1) or at desiccation ($=0). In the pre-
sented application, a sequence of two consecutive
switches between atmosphere-controlled and soil-
controlled phases is solved. The results are for a
column of soil of dimensionless thickness =3 .

In figure 1a, the thick dashed line corresponds
to the uniform soil volumetric water content dis-
tribution at the starting time, the initial condition.

The vertical soil moisture distributions at the
quoted multiples of 7, are drawn in blue and red
during the atmosphere-controlled phases and in
cyan and pink during the soil-controlled phases.
With the available positive flux applied, the soil sur-
face reaches the saturation at the ponding time 7,
and remains saturated until the applied flux be-
comes negative. At this time a new atmosphere-
controlled phase starts and it lasts till the soil is
able to convey water to the surface at the poten-
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Fig. 1 - (a) soil moisture profiles computed by the procedure at the indicated dimensionless times (multiples of ), the blue and red curves are the solutions
during the atmosphere-controlled phases and the cyan and pink ones during the soil-controlled phases; (b) applied surface flux (thick dashed line) and analytical
surface flux after ponding time (cyan) or after desiccation time (pink), the two thin dash-dot vertical lines indicate the ponding time (blue) and the desiccation
time (red); (c) cumulative flux trends computed by the procedure: applied surface flux (Cpp), water entered through the surface (Cgp), water gained by the
column of soil of dimensionless height £ =3 (Cyyg), runoff (positive) or deficit respect to the evaporation demand (negative) (Cg(y) and water flown through
the bottom of the column (Cgp) during the whole period of time (7=20-7, ).
- (a) profili di contenuto volumetrico d’acqua calcolati dalla procedura ai tempi adimensionali (multipli di 1) indicati in figuray le soluzioni durante le fasi controllate dall atmosfera sono
di colore blu e rosso, durante le fasi controllate dal snolo sono di colore ciano e rosa; (b) flusso applicato alla superficie (linea tratteggiata spessa) e flusso analitico alla superficie dopo la sa-
turazione (ciano) o il completo essiccamento (rosa), le due linee verticali (tratto punto) indicano i tempi di ragginnta saturazione (blu) e completo essiccamento alla superficie (rosso); (c) flussi
cummlativi caleolati dalla procedura: flusso applicato alla superficie (C 41;), acqua entrata attraverso la superficie (Csp), acqua guadagnata dalla colonna di snolo di altexza adimensionale
&=3 (Cype), ruscellamento (positivo) o deficit rispetto alla domanda di evaporazione (negativo) (Crp)) e flusso uscente dal fondo della colonna (Cyp;) durante Uintero intervallo
temporale (=20-x, ).

tial rate, that is, till the air-dry value is reached at mulative fluxes obtained by the sum of the in-
the surface. At the desiccation time 7, starts a new stantaneous flux, at the solution time, times the
soil-controlled phase. After n=11-5, the soil water time interval between two consecutive solutions.
content profiles show a maximum, moving down- The symbols indicate the values estimated at the
ward with decreasing amplitude. The thick dashed solution times reported in figure la while the
line in figure 1b corresponds to the boundary solid lines are obtained from the solutions com-
condition (flux applied at the surface). The first puted each 7,/5 dimensionless time interval, as
four cyan circles are the analytically computed for figure 1b. In figure 1c a small difference be-
surface flux values at the solution times, during tween symbols and lines can be appreciated; it is
the saturation; similarly, the last four circles (pink) due to the time interval between two consecutive
are the surface flux values, during the desiccation. solutions. The time interval for the symbols is
They are computed at the dimensionless times re- 7, ot 2.5, while, for the solid lines, it is#,/5 .

ported in figure la. The solid lines (cyan and The computed runoff is the difference be-
pink) are the analytical surface flux computed tween the applied flux (boundary condition) and
each 7,/5 dimensionless time interval during the the analytically computed surface flux; therefore
two soil-controlled phases. The two vertical dash- it is a real runoff when it is positive and it is the
dot lines indicate the times of ponding 7, (blue) deficit respect to the evaporation demand when

and air-dry soil 7, (red). Figure 1c reports the cu- negative.
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4.3. — HALF SPACE DOMAIN: NULL IC AND EXPO-
NENTIAL FLUX BC

In this second application, the comparison be-
tween the soil water content obtained by the pro-
cedure and the results of the analytical solution of
the linearized Richards equation subject to a null
soil water content initial condition and a decreasing
exponential flux boundary condition is presented.
Therefore the initial-boundary conditions are:

8()=0 (n=0)
@y () =q,-e"" €=0)

In this case the solution of the Richards equa-
tion is equal to equation (18a) or (18b) or (18c), ac-
cording to the value of y;in the obtained solution
D(£,7n), g, substitutes §. Then the soil water conten

%(&,n) is obtained using equation (11):
£-2rn
9{c,a)=%e[ )

T

L (E2) (i) o (garg) et (corn
{59 M odn 1= 200 i 20
(19)

where 7=,/1-4-y. Equation (19) is valid for y <1/4
and till the saturation is reached.

In this second application of the procedure y =1/4
has been chosen, so that =0 and equation (19) is
very simple. The soil water content distribution is
computed for a column of soil of dimensionless
height £=3, at multiples of the dimensionless
tme 7.

The results are shown in figures 2a, 2b and 2c.

The thick vertical dashed line on the left side of
figure 2a is the null initial condition and the de-
creasing exponential in figure 2b is the boundary
condition. The green and cyan solid lines in figure
2a are the solutions of the procedure obtained ap-
proximating the exponential boundary condition
with a time step of #7,/6 . The symbols represent
the analytic soil water content profiles obtained
using (19) with y=1/4. Both procedure and analytic
solution are computed at the dimensionless times
reported in figure 2a. Up to n7=6-7,, the applied flux
is able to increase the surface moisture without
reaching the saturation, as shown by the first four
solutions (green curves). As the time goes on, the
decreasing exponential flux implies a decrease in
the surface moisture, as shown by the last four so-
lutions (cyan curves). In order to qualitatively ver-
ify the influence of the “time step” chosen to
approximate the boundary condition, the solutions
at 1, 2, 4 and 6 7 have been recomputed using a
time step of 4-7,; they are the black lines in figure
2a. In figure 2c only the cumulative applied surface

flux (black), the water gained by the column (blue)
and the cumulative bottom flux (green) are re-
ported because the surface flux equals at each time
the applied one and, therefore, the runoff is always
null.

4.4. — FINITE-THICKNESS DOMAIN: CONSTANT 1C
AND BCs

A simple example, with constant initial-bound-
ary conditions for the finite-thickness domain, is
here presented. In this case the solution of the
model is exactly the analytical solution of the prob-
lem. In fact, the solution is the sum of equations
(12a) and (12b) which are the basic elements to
build a procedure similar to the one described for
the half-space domain. Uniform soil water content
at saturation ($=1) is assumed as initial condition
for the finite-thickness layer of dimensionless
depth ¢ =1. At the time origin the soil water con-
tent at the top of the layer becomes and remains
null while the value at the bottom continues to be
at saturation. Figure 3a shows the soil water con-
tent profiles computed by equations (12a) and
(12b) at the dimensionless times: 1, 2, 4, 6, 12, 24,
30, 48, 72, 96, 120, 144, 192, 240 7,. The dashed
line is the initial condition and the dotted line is the
stationary solution. Figure 3b shows the instanta-
neous dimensionless flux at the top (pink) and bot-
tom (green) boundaries; the symbols are the values
computed at the aforementioned solution times.
The fluxes are positive in the increasing depth di-
rection. The square crossed is the value to which
both the fluxes tend: that is the stationary flux. Fig-
ure 3¢ shows the cumulative dimensionless flux at
the top (red) and bottom (green) boundaries. The
total water content trend (blue line and star) is also
shown. The full blue star is the total water content
at the stationary condition.

5. — CONCLUSIONS

In this paper, a compilation of the solutions ob-
tained for the linearized one-dimensional Richards
equation, solved both in a half-space and in a fi-
nite-thickness domain has been presented. For
space reasons, only the most meaningful solutions
were described.

The soil water content at any required time and
depth results as the sum of two components; one
related to the initial condition and to null boundary
conditions and the other related to the boundary
conditions and to null initial condition. The sum
of these two components is the general solution
of the Richards equation in integral form and the
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Fig. 2 - (a) soil moisture profiles computed by the procedure (solid lines) and using equation (19) (symbols) at the indicated dimensionless times (multiples of #).

The four black lines are the solutions computed by the procedure (at the same times of the green curves) using a worst approximation of the boundary condi-

tion; (b) exponential flux applied at the surface; (c) cumulative trends computed by the procedure: applied surface flux (Cyp), water gained by the column of
soil of dimensionless height ¢ =3 (Cyy) and water flown through the bottom of the column (Cgp) during the whole period of time.

- (a) profili di contennto volumetrico d’acqua calcolati dalla procedura (linee continne) ¢ con l'equazione (19) (simboli) ai tempi adimensionali (multipli di ) indicati in fignra. 1e quattro

linee nere sono le soluzioni, calcolate agli stessi tempi di quelle verds, ma con un’approssimazione della condizione al contorno meno accuratay (b) flusso esponenziale applicato alla superfi-

cie; (¢) and.

mnlativi calcolati dalla procedura: flusso applicato alla superficie (C 45), acqua gunadagnata dalla colonna di snolo di altexza adimensionale & =3 (Cyyc;) e flusso nscente

dal fondo della colonna (Cy) durante 'intero intervallo temporale.

analytical expression of the soil water content dis-
tribution is therefore obtained if the integrals in
the solution can be solved. The paper also de-
scribes a new method to compute the solutions of
the linearized Richards equation, when arbitrary
discrete initial and boundary conditions are avail-
able (step functions). For the half-space domain
the initial condition is the soil volumetric water
content and the boundary condition is the flux
available at the surface. The experimental readings
at a hydro-meteorological station correspond ex-
actly to a step function like the one required by the
model. This model also accounts for the switching
between successive atmosphere-controlled and soil
controlled phases and vice versa. Each phase has
its own solution and requires its own initial condi-
tion, which is automatically computed by the de-
scribed procedure. If the linearization of the
Richards equation can be considered a valid as-
sumption for a specific soil and its soil water con-
tent, the presented procedure is a quite valid tool to
estimate the evolution of the soil water content

distribution, the ponding or desiccation time, the
water fluxes and the water gained or lost by a col-
umn of surface soil. It can also be used, a priori, to
define the best spatial domain and the probes
depth of a hydrological station to study a specific
topic: irrigation, evaporation, ground water
recharge and so on. The same can be said about
the time step of meteorological readings to be used
to estimate the flux applied at the surface.

It must be remarked that the spatial domain of the
procedure is a uniform half-space. In many real
cases (e.g. in presence of shallow freatic aquifers)
the spatial domain is finite and it is better repre-
sented by a finite-layer. Here a very simple exam-
ple for the finite-thickness domain has been
presented. The importance of this example is that
its analytical solution, which is derived for constant
initial and boundary conditions, represents the
basic element to build a new procedure similar to
the one described for the half-space domain. In
fact, the solution with the initial-boundary condi-
tions approximated with step functions is a sum of
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Fig. 3 - (a) soil moisture profiles computed by equations (12a) and (12b) at the dimensionless times: 1, 2, 4, 6, 12, 24, 36, 48, 72, 96, 120, 144, 192, 2401,. The
dashed line is the initial condition (9=1) ; the dotted line is the stationary solution; (b) instantancous dimensionless flux at the top (pink) and bottom (green)
boundaries; the symbols are the values computed at the aforementioned solution times. The square crossed is the value of the flux at the stationary condition;
(c) cumulative dimensionless flux at the top (red) and bottom (green) boundaries, the symbols are the values computed at the solution times; total water content
trend (blue), the symbols (star) are the values computed at the solution times; the full blue star is the total water content at the stationary condition.
- (a) profili di contenuto volumetrico d'acqua calcolati dalle equazioni (12a) e (12b) ai tempi adimensionali : 1, 2, 4, 6, 12, 24, 36, 48, 72, 96, 120, 144, 192, 240 n,. La linea trat-
toggiata ¢ la condizione inixiale (9 =1); la linea punteggiata ¢ la soluzione stazionaria; (b) flussi istantanei adimensionali ai confini superiore (rosa) e inferiore (verde); i simboli sono i va-
lori calcolati ai tempi delle soluzeoni citati sgpra. 11 quadratino con la croce all'interno ¢ il valore del flusso in condizione stagionaria; (c) flussi cumulativi adimensionali ai confini superiore
(rosso) e inferiore (verde), i simboli sono i valori calcolati ai tempi delle soluzioni;

e del cont

to d'acqua totale (blu), i simboli (stelle) sono i valori calcolati ai tempi delle
soluzioni la stella blu piena indica il contennto d’acqua alla stagionarieta.

solutions similar to the one here used. In this case
(finite-thickness domain), since the boundary
conditions are the soil water content trends, the
procedure doesn’t require a switch between
atmosphere-controlled and soil-controlled phases.
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