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Time and space are discrete

Rules to define connectivity among
cells are needed

Cells can be “weighted”, for example
using SDM

Particularly useful in large-scale
invasions
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Metapopulation, gravity and network models: only some specific cells (nodes) of the

space are utilized and connected by edges

7 (D) Year=1968

Each node can act as a subpopulation
Each edge can be regulated by
dispersal and behavioral rules
Management can be simulated at
nodes and edges

Particularly useful to target freshwater
aquatic invaders or urban invaders
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Individual based models: bottom-up approach that “tracks” each individual across space

- It requires huge computational
efforts

- It requires detailed information
about life-history traits of the target
species

- It is potentially more realistic

- It can be very difficult to
parameterize

- It can be run into a cellular
automata model or a

metapopulation model
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Mating: Mature individuals mate, with movement
probabilities defined by the resistance surface,

v

Offspring: Fecundity defined by length, egg survival to
fingerling stage ocours.

v

Update individuals: Update age and body size for each
individual based on local temperature.

¥

Emigration: Individual migration probabilities for
overwintering are based on size class. Density
dependent mortality occurs.

Density-independent mortality: Apply constant
mortality to individuals age 7+,

B

Update individuals: Update age and length for each
individual based on local temperature.

v

Immigration: Migrants either disperse to new spawning
location or return to natal grounds. Residents may also
disperse. Density dependent mortality occurs.

Density-independent mortality: Apply mortality due to
control treatments, probabilities vary by patch and

individual IenEth.
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Mating: Mature individuals mate, with movement
probabilities defined by the resistance surface,

v

Offspring: Fecundity defined by length, egg survival to
fingerling stage ocours.

v

Update individuals: Update age and body size for each
individual based on local temperature.

¥

Emigration: Individual migration probabilities for
overwintering are based on size class. Density
dependent mortality occurs.

Density-independent mortality: Apply constant
mortality to individuals age 7+,

B

Update individuals: Update age and length for each
individual based on local temperature.

v

Immigration: Migrants either disperse to new spawning
location or return to natal grounds. Residents may also
disperse. Density dependent mortality occurs.

Density-independent mortality: Apply mortality due to
control treatments, probabilities vary by patch and

individual IenEth.
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In conclusions:

Spatially explicit models are already an invaluable tool for IAS
management. However, the diversity of approaches now available requires
to consider a few aspects such as:

Spatial and temporal scales
Availability of species-specific information around the target species
Computational time

Field data to parameterize and validate the model
Sensitivity of the model
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