Spatially explicit populations models to deal with issues in IAS management

Giovanni Vimercati – Post-doc at University of Angers

Non-equilibrium spatiotemporal dinamics of invasive species

Invasion science for society: A decade of contributions from the Centre for Invasion Biology

AUTHORS: Brian W. van Wilgen¹

Sarah J. Davies¹ David M. Richardson¹

South African Journal of Science http://www.sajs.co.za

Volume 110 | Number 7/8 July/August 2014

TIME

Non-equilibrium spatiotemporal dinamics of invasive species

Can be reconstructed using **spatially explicit** population models:

- cellular automata and lattice models
- metapopulation, gravity and network models
- individual based models

AUTHORS: Brian W. van Wilgen¹

Invasion science for society: A decade of contributions from the Centre for Invasion Biology

Sarah J. Davies¹
David M. Richardson¹

South African Journal of Science http://www.sajs.co.za 1

Volume 110 | Number 7/8 July/August 2014

TIME

NATURAL RESOURCE MODELING Volume 30, Number 2, May 2017

INTEGER PROGRAMMING APPROACH TO CONTROL INVASIVE SPECIES SPREAD BASED ON CELLULAR AUTOMATON MODEL

ATSUSHI YOSHIMOTO

- Colonized cells without treatments
- Newly colonized cells
- ☑ Colonized cells with treatments
- O Uncolonized cells with treatments
- ☐ Uncolonized cells

NATURAL RESOURCE MODELING Volume 30, Number 2, May 2017

INTEGER PROGRAMMING APPROACH TO CONTROL INVASIVE SPECIES SPREAD BASED ON CELLULAR AUTOMATON MODEL

ATSUSHI YOSHIMOTO

- Colonized cells without treatments
- Newly colonized cells
- **☒** Colonized cells with treatments
- O Uncolonized cells with treatments
- ☐ Uncolonized cells

NATURAL RESOURCE MODELING Volume 30, Number 2, May 2017

INTEGER PROGRAMMING APPROACH TO CONTROL INVASIVE SPECIES SPREAD BASED ON CELLULAR AUTOMATON MODEL

ATSUSHI YOSHIMOTO

- Colonized cells without treatments
- Newly colonized cells
- **☒** Colonized cells with treatments
- O Uncolonized cells with treatments
- ☐ Uncolonized cells

- Time and space are discrete

- Time and space are discrete
- Rules to define connectivity among cells are needed

- Time and space are discrete
- Rules to define connectivity among cells are needed

- Time and space are discrete
- Rules to define connectivity among cells are needed

- Time and space are discrete
- Rules to define connectivity among cells are needed
- Cells can be "weighted", for example using SDM

- Time and space are discrete
- Rules to define connectivity among cells are needed
- Cells can be "weighted", for example using SDM

- Time and space are discrete
- Rules to define connectivity among cells are needed
- Cells can be "weighted", for example using SDM
- Particularly useful in large-scale invasions

A model to simulate the spread and management cost of kudzu (*Pueraria montana* var. *lobata*) at landscape scale[☆]

J.-P. Aurambout*, A.G. Endress

Ecological Informatics 43 (2018) 146–156

A model to simulate the spread and management cost of kudzu (*Pueraria montana* var. *lobata*) at landscape scale[★]

J.-P. Aurambout*, A.G. Endress

Ecological Informatics 43 (2018) 146–156

A model to simulate the spread and management cost of kudzu (*Pueraria montana* var. *lobata*) at landscape scale[☆]

J.-P. Aurambout*, A.G. Endress

Ecological Informatics 43 (2018) 146–156

Biol Invasions (2014) 16:949–960 DOI 10.1007/s10530-013-0552-6

ORIGINAL PAPER

Modeling the spread of invasive species using dynamic network models

Joseph R. Ferrari · Evan L. Preisser · Matthew C. Fitzpatrick

Hemlock woolly adelgid

Biol Invasions (2014) 16:949–960 DOI 10.1007/s10530-013-0552-6

ORIGINAL PAPER

Modeling the spread of invasive species using dynamic network models

Joseph R. Ferrari · Evan L. Preisser · Matthew C. Fitzpatrick

Hemlock woolly adelgid

Biol Invasions (2014) 16:949–960 DOI 10.1007/s10530-013-0552-6

ORIGINAL PAPER

Modeling the spread of invasive species using dynamic network models

Joseph R. Ferrari · Evan L. Preisser · Matthew C. Fitzpatrick

Hemlock woolly adelgid

Biol Invasions (2014) 16:949–960 DOI 10.1007/s10530-013-0552-6

ORIGINAL PAPER

Modeling the spread of invasive species using dynamic network models

Joseph R. Ferrari · Evan L. Preisser · Matthew C. Fitzpatrick

Hemlock woolly adelgid

Biol Invasions (2014) 16:949–960 DOI 10.1007/s10530-013-0552-6

ORIGINAL PAPER

Modeling the spread of invasive species using dynamic network models

Joseph R. Ferrari · Evan L. Preisser · Matthew C. Fitzpatrick

Hemlock woolly adelgid

- Each node can act as a subpopulation

- Each node can act as a subpopulation
- Each edge can be regulated by dispersal and behavioral rules

- Each node can act as a subpopulation
- Each edge can be regulated by dispersal and behavioral rules
- Management can be simulated at nodes and edges

- Each node can act as a subpopulation
- Each edge can be regulated by dispersal and behavioral rules
- Management can be simulated at nodes and edges
- Particularly useful to target freshwater aquatic invaders or urban invaders

Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran

Giovanni Vimercati a,*, Cang Hui b,c, Sarah J. Davies a, G. John Measey a

Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran

Giovanni Vimercati a,*, Cang Hui b,c, Sarah J. Davies a, G. John Measey a

Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran

Giovanni Vimercati a,*, Cang Hui b,c, Sarah J. Davies a, G. John Measey a

Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran

Giovanni Vimercati a,*, Cang Hui b,c, Sarah J. Davies a, G. John Measey a

Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran

Giovanni Vimercati a,*, Cang Hui b,c, Sarah J. Davies a, G. John Measey a

Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran

Giovanni Vimercati a,*, Cang Hui b,c, Sarah J. Davies a, G. John Measey a

Guttural toad

Guttural toad

Guttural toad

Restricted property access significantly constrains management success!

Painted reed frog

Painted reed frog

Restricted property access significantly constrains management success!

African clawed frog

African clawed frog

Restricted property access does not significantly constrain management success!

Individual based models: bottom-up approach that "tracks" each individual across space

Dispersal of 50 frog computed by Dr. Pablo Garcia-Diaz

Dispersal of 50 invasive cane toads computed by Dr. Pablo Garcia-Diaz

- It requires huge computational efforts

- It requires huge computational efforts
- It requires detailed information about life-history traits of the target species

- It requires huge computational efforts
- It requires detailed information about life-history traits of the target species
- It is potentially more realistic

- It requires huge computational efforts
- It requires detailed information about life-history traits of the target species
- It is potentially more realistic
- It can be very difficult to parameterize

- It requires huge computational efforts
- It requires detailed information about life-history traits of the target species
- It is potentially more realistic
- It can be very difficult to parameterize
- It can be run into a cellular automata model or a metapopulation model

Using simulation modeling to inform management of invasive species: A case study of eastern brook trout suppression and eradication

Casey C. Day^{a,*}, Erin L. Landguth^b, Andrew Bearlin^c, Zachary A. Holden^d, Andrew R. Whiteley^e Biological Conservation 221 (2018) 10–22

Using simulation modeling to inform management of invasive species: A case study of eastern brook trout suppression and eradication

Casey C. Day^{a,*}, Erin L. Landguth^b, Andrew Bearlin^c, Zachary A. Holden^d, Andrew R. Whiteley^e Biological Conservation 221 (2018) 10–22

Treatment

- Eradication
- Suppression
- None

Using simulation modeling to inform management of invasive species: A case study of eastern brook trout suppression and eradication

Casey C. Day^{a,*}, Erin L. Landguth^b, Andrew Bearlin^c, Zachary A. Holden^d, Andrew R. Whiteley^e Biological Conservation 221 (2018) 10–22

Treatment

- Eradication
- Suppression
- None

Spatially explicit models are already an invaluable tool for IAS management. However, the diversity of approaches now available requires to consider a few aspects such as:

- Spatial and temporal scales

- Spatial and temporal scales
- Availability of species-specific information around the target species

- Spatial and temporal scales
- Availability of species-specific information around the target species
- Computational time

- Spatial and temporal scales
- Availability of species-specific information around the target species
- Computational time
- Field data to parameterize and validate the model

- Spatial and temporal scales
- Availability of species-specific information around the target species
- Computational time
- Field data to parameterize and validate the model
- Sensitivity of the model

Acknowledgments:

- ISPRA and the organizers of the event
- University of Angers and Life CROAA
- Centre of Excellence for Invasion Biology
- Dr Jean Secondi
- Dr John Measey and Dr Sarah Davies
- Prof. Dave Richardson and Prof. Cang Hui